
       

 

ESSnet  Big  Data I I  

 

G r a n t  A g r e e m e n t  N u m b e r :  8 4 7 3 7 5 - 2 0 1 8 - N L - B I G D A T A  

h t t p s : / / w e b g a t e . e c . e u r o p a . e u / f p f i s / m w i k i s / e s s n e t b i g d a t a  

h t t p s : / / e c . e u r o p a . e u / e u r o s t a t / c r o s / c o n t e n t / e s s n e t b i g d a t a _ e n  

 

 

W o rk pa c k a ge  I  

Mo bi l e  N e two rk  D a ta  

 

D e l i v e ra bl e  I . 4  ( In fo rma t i o n  T e c ho no l o g i e s )  

S o me  IT  to o l s  fo r  the  pro duc t i o n  o f  o f f i c i a l  s ta t i s t i c s  

wi th  mo bi l e  n e two rk  da ta  

Draft version, 31 August, 2020 

 

 

 

ES LSnet co-ordinator: 

 

  

 

Workpackage Leader: 

 

David Salgado (INE, Spain) 

david.salgado.fernandez@ine.es 

 telephone : +34 91 5813151 

 mobile phone : N/A 

Prepared by:  

Bogdan Oancea (INS, Romania) 

 

- Sandra Barragán (INE, Spain) - David Salgado (INE, Spain) 

- Luis Sanguiao (INE, Spain)  

  

 



Contents

1 Executive summary 1

2 Introduction 3
2.1. The programming languages of the IT components . . . . . . . . . . . . . . . . . 3
2.2. The layered structure of the IT components . . . . . . . . . . . . . . . . . . . . . . 5
2.3. The interfaces between layers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3 The data acquisition and preprocessing layer 17
3.1. MNO data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.2. Synthetic data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.2.1. The simulation software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.2.2. Simulation scenarios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4 The geolocation layer 23
4.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.2. Model construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4.2.1. HMM initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.2.2. Time discretization and reduction of parameters . . . . . . . . . . . . . . . 24
4.2.3. Construction of the emission model . . . . . . . . . . . . . . . . . . . . . . 25
4.2.4. Construction of the transition model . . . . . . . . . . . . . . . . . . . . . . 28

4.3. Fitting the model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.3.1. Parameter estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.3.2. Computation of the likelihood . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.3.3. Posterior location probabilities estimation . . . . . . . . . . . . . . . . . . . 33
4.3.4. The initial probability distribution . . . . . . . . . . . . . . . . . . . . . . . 34

4.4. An end to end example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.5. Some remarks about computational efficiency . . . . . . . . . . . . . . . . . . . . 38

4.5.1. Model construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
4.5.2. Model initialization and parametrization . . . . . . . . . . . . . . . . . . . 39
4.5.3. Forward-Backward algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.5.4. Likelihood optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.5.5. Optimization algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

5 The deduplication layer 41
5.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

5.1.1. Device duplicity problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
5.1.2. Bayesian approaches based on network events . . . . . . . . . . . . . . . . 42

II



Contents

5.1.3. The trajectory approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
5.2. Syntax step by step . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

5.2.1. The Bayesian approach with network events - the one-to-one method . . 45
5.2.2. The Bayesian approach with network events - the pairs method . . . . . . 46
5.2.3. The trajectory approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

5.3. Some remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
5.3.1. Basic use in the easy way . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
5.3.2. A note on building the HMM models . . . . . . . . . . . . . . . . . . . . . 50
5.3.3. Notes about computational efficiency . . . . . . . . . . . . . . . . . . . . . 50

6 The aggregation layer 51
6.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
6.2. The number of detected individuals . . . . . . . . . . . . . . . . . . . . . . . . . . 52

6.2.1. Brief methodological description . . . . . . . . . . . . . . . . . . . . . . . . 52
6.2.2. The rNnetEvent() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

6.3. The origin destination matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
6.3.1. Brief methodological description . . . . . . . . . . . . . . . . . . . . . . . . 56
6.3.2. The rNnetEventOD() function . . . . . . . . . . . . . . . . . . . . . . . . 56

6.4. Some remarks about computational efficiency . . . . . . . . . . . . . . . . . . . . 58

7 The inference layer 59
7.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
7.2. Population at the initial time t0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

7.2.1. Brief methodological description . . . . . . . . . . . . . . . . . . . . . . . . 60
7.2.2. Implementation step by step . . . . . . . . . . . . . . . . . . . . . . . . . . 63

7.3. The dynamical approach: population at t > t0 . . . . . . . . . . . . . . . . . . . . 66
7.3.1. Brief methodological description . . . . . . . . . . . . . . . . . . . . . . . . 66
7.3.2. Implementation step by step . . . . . . . . . . . . . . . . . . . . . . . . . . 67

7.4. Origin-destination matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
7.4.1. Brief methodological description . . . . . . . . . . . . . . . . . . . . . . . . 69
7.4.2. Implementation step by step . . . . . . . . . . . . . . . . . . . . . . . . . . 70

7.5. The inference REST API . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
7.5.1. A conceptual overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
7.5.2. API example step by step . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

7.6. Some remarks about computational efficiency . . . . . . . . . . . . . . . . . . . . 80

8 Further developments 81

A Reference manual for the inference package 85

B Reference manual for the aggregation package 101

C Reference manual for the deduplication package 109

D Reference manual for the destim package 139

Bibliography 165

III





1

Executive summary

This document addresses the software implementation of the methodological framework
designed to incorporate mobile phone data into the current production chain of official
statistics. It presents an overview of the architecture of the software stack, its components,
the interfaces between them and shows how they can be used.
The modules of our software implementation are four R packages:

destim - it estimates the spatial distribution of the mobile devices providing the
location probability for each device, at each time instant for each tile of the grid.

deduplication - it classifies the devices as being in 1:1 or 2:1 correspondence with
its owner. This classification is probabilistic, thus, assigning each device a probability
to belong to one of the two classes already mentioned.

aggregation - it estimates the number of individuals detected by the network
starting from the number of devices and the duplicity probabilities. It also estimates
the number of individuals moving from one geographical region to another, i.e. the
origin-destination matrix.

inference - combines the number of individuals provided by the previous package
with other information like the population count from an official register and the
mobile operator penetration rates to provide an estimation of the target population
count.

All R packages are freely available and they can be installed from github account of our
project, https://github.com/MobilePhoneESSnetBigData.
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Introduction

This document contains a description of the software implementation of the methodological
framework built within the Work Package I of the ESSnet Big Data II project with the purpose of
incorporating mobile network data into the current production of official statistics. Thus, an
interested reader should be familiarized with the content of this methodological approach which
is given in Deliverable I.3 (Methodology) - A proposed production framework with mobile
network data (Salgado et al., 2020).

The document is divided into the following chapters. In chapter 2 we present an overall
view of the architecture of the software implementation, describing the rationale behind this
architecture, its main components/modules, and the interfaces between them. In chapter 3
we deal with the first layer in the software stack, namely the Data acquisition and preprocessing
layer. The next chapter is dedicated to the geolocation module which produces the posterior
location probabilities at the level of each device and (discrete) location on the map. In chapter 5
we describe the implementation of the deduplication module which has the role of computing
the duplicity probability for each device detected by the network, i.e. the probability for a
mobile device to be in a 2-to-1 correspondence with its owner. In chapter 6 we show how the
number of detected mobile devices, combined with the duplicity probability for each device
and the location probabilities are transformed into the number of individuals detected by the
network. Chapter 7 is dedicated to the inference module that takes as inputs the number
of detected individuals and other auxiliary data sources (such as a population register) and
produces the population counts for each time instants and geographical units under consid-
eration. Finally, in chapter 8 we comment on future prospects and several open issues. The
software tools that we developed to implement the above mentioned methodological frame-
work consists in a set o R packages that are freely available on github at the following address:
https://github.com/MobilePhoneESSnetBigData

2.1. The programming languages of the IT components

We start this introductory chapter by giving some reasons for selection the programming
language for our software implementation. Firstly, we considered the recent trends in the devel-
opment of the computing systems which shows a clear movement from the INTEL hardware
platform to ARM (Morgan, 2020; Dipert, 2011; Blem et al., 2013). Moreover, the first supercom-
puter in Top500 supercomputers in 2020 (TOP500.org, 2020), Fugaku, is powered by Fujitsu’s
48-core A64FX SoC which is an ARM processor. This trend is a clear indication for us that a
software developed now with the intention to be used in the future should be portable at the

3
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level of source code. In fact this is one of the main goals of software portability (Mooney, 2004a,b).

Secondly, our final goal is to produce a software for statisticians, not for computer scientists.
Thus, the language of the implementation should be familiar for statisticians and easy to use
by them. We decoupled in a certain degree the task of using the software from the task of
developing the software. While using the software should be easy (as much as such a highly
specialized software could be) the development could include techniques not very familiar to
statisticians and computer scientists are still needed.

Thirdly, we planned to use only open source tools like libraries, IDEs, debuggers, profilers,
etc. to maintain the software development process under a strict control regarding the associated
costs. Moreover, the programming language together with these tools should have a large
community of programmers and users which can be seen as a free technical support.

Fourthly, the programming language should have support for parallel and distributed com-
puting. Since all the algorithms involved by our methodological approach are computational
intensive, and the size of mobile phone data could be very large, this is a mandatory requirement.

Last but not least important, the criteria of programming efficiency and resources needed
to run the software even on normal desktops/laptops were considered when we selected a
programming language.

We’ve built a pool of possible languages that fulfill the above mentioned criteria and rejected
some of them from the beginning because they were considered of being too low level to be
enough user-friendly (plain C and C++) or not widely used among official statistics community
(Java, Scala or Julia) Schissler et al. (2019). Eventually, we came to the following two
software ecosystems: R (R Core Team, 2020) or Python (Van Rossum and Drake, 2009). Both
systems meet our criteria and have a large community of users but while Python is generally
considered to be more computationally efficient (see for example Schissler et al. (2019) or the
results of the benchmarks here https://modelingguru.nasa.gov/docs/DOC-2676), R
is better suited for statistical purposes and it seems to gain ground among the official statistics
community (Templ and Todorov, 2016; Kowarik and van der Loo, 2018). Since our target
audience is the official statistics community, we decided to develop our software modules
mainly by using R and write few specific functions that are computationally demanding using
C++ to fasten the execution. We list below some of the advantages of our choice:

there are around 16,500 packages available in CRAN (https://cran.r-project.org/
with a wide range of them developed specially for official statistics (they can be found at
the following URL:
https://github.com/SNStatComp/awesome-official-statistics-software);

R has good support for parallel and distributed processing;

R can be easily interfaced and work together with high performance languages like C++
(Eddelbuettel and François, 2011; Eddelbuettel, 2013; Eddelbuettel and Balamuta, 2017)
when the performance of plain R is not enough;

R can be interfaced with computing ecosystems used in the big data area such as Hadoop
(White, 2009) or Spark (Zaharia et al., 2016). There are several packages that allow a neat
interface between R and these systems: RHadoop (which is in fact a collection of packages
- rhdfs, plyrmr, rmr2, ravro), Hadoop Streaming, hive, SparkR, sparklyr (Oancea and
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2.2 The layered structure of the IT components

Dragoescu, 2014; Rosenberg, 2012; Feinerer and Theussl, 2020; Venkataraman et al., 2016;
Luraschi et al., 2020) which means that, if needed, all modules of our software stack can be
integrated with such systems for a production pipeline, with much or less programming
effort.

We mention from the beginning that during the development of our software implementation
we used only simulated data for testing and profiling purposes but using real mobile phone data
requires no changes in the software but only a preprocessing step to bring the real data sets to
the format required by the current software. Bilateral collaborations on testing the software on
real data have been started, but data protection, data sharing restrictions, and access limitations
make this a slow and difficult task.

If the size of real data is too big to be supported by the current implementation, all software
modules developed within this project can be transformed to work with Hadoop or Spark as
mentioned before and ported to a cloud computing environment.

2.2. The layered structure of the IT components

Functional modularity in the statistical process is a central element when working with new
data sources that are technology dependent. In the area of mobile phone data there are already
specific proposals to organize a methodological framework (Ricciato, 2018). Our methodological
approach is in line with this proposal (which we will call ESS Reference Methodological Framework)
and is organized based on the following principles:

modularity - the division of the production process into separate parts/modules;

abstraction - the design and division of these parts/modules so that their interaction
takes place only through the interfaces making the internals of each module as much
independent of the rest of modules;

In terms of methodology, the process steps are represented in Figure 2.1 and described in
detail by Salgado et al. (2020).

Organizing the modules that made up our software implementation in such a way to min-
imize their interaction is achieved by layering/stacking them in a hierarchy. Following this
idea, the software implementation uses a layered design which is one of the most common
architecture patterns in software design (Richards, 2015). Besides following closely the archi-
tecture of the methodological framework, the layered design that we used for the software
implementation has other advantages too:

easy to develop and maintain;

easy to test;

changing the implementation of one layer (component) does not affect the rest of the
components;

We organized our stack of software modules as follows:

Data acquisition and preprocessing layer. This layer deals with capturing the network events
and applying o series of preprocessing operations to bring them into a form that can
be statistically exploited. It is a component that is strongly dependent on the mobile
network technology which can vary among different MNOs and geographical regions.
This component is not implemented in our software stack because we lacked access to a

5
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Figure 2.1: Representation of the Process Steps framed in the ESS Reference Methodological
Framework. See also Ricciato (2018).

real mobile network during the process of writing the code. Instead, we used a mobile
network data simulator that was described in detail by Oancea et al. (2019).

Geolocation layer. Its main purpose is to exploit the network events data and to derive the
probability of localization for each device at the level of geographical units. This is done us-
ing a Hidden Markov Model and is implemented in the R package destim available from
the following URL: https://github.com/MobilePhoneESSnetBigData/destim.
It provides the location probability for each individual device as well as the joint location
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probabilities.

Deduplication layer. The purpose of this component is to classify each device d as cor-
responding to an individual with only one device (1:1 correspondence between de-
vices and individuals) or as corresponding to an individual with two devices (2:1 cor-
respondence between devices and individuals). This classification is a probabilistic
one, thus assigning a probability p

(n)
d of duplicity to each device d carrying n = 1, 2

devices. The layer is implemented in the R package deduplication available here:
https://github.com/MobilePhoneESSnetBigData/deduplication.

Aggregation layer. The purpose of this layer is to estimate the number of detected individuals
starting from the number of detected mobile devices and making use of the duplicity prob-
ability for each device provided by the previous layer. It is implemented in the R package
aggregation available here: https://github.com/MobilePhoneESSnetBigData/
aggregation.

Inference layer. The role of this layer is to compute the probability distribution for the number
of individuals in the target population conditioned on the number of individuals detected
by the network and some auxiliary information coming from telco penetration rates and
population registers. It is also implemented in an R package inference available here:
https://github.com/MobilePhoneESSnetBigData/inference.

One can easily note that a module is missing comparing with the methodological framework.
This is the statistical filtering layer. We choose not to implement it because we lack data to
test such a module and it is also domain-specific. Instead, we pass the entire set of data from
the aggregation layer to the inference layer, thus counting the entire population present in a
geographical territory.

All the layers in this hierarchy communicate with theirs (direct and distance) neighbors,
receiving data from the layer/layers below and passing the results to the layer/layers above.
Some layers not only provide their output only to the immediate upper layer but also to others
layers on top of them. For example, the aggregation layer receives its input from the layer
immediately below, the deduplication layer, and also from the geolocation layer and the
inference layer takes its input from the aggregation, deduplication and geolocation
layers. The data that flows to an indirect upper layer practically ”tunnels” the direct upper
layer. Besides, some auxiliary data such as the sequence of time instants, the division of the
geographical area in tiles and regions, some parameters of the mobile network, etc. are available
for all layers. Instead of passing the data as memory data objects (as it is happening in an
enterprise application for example), each layer uses a secondary storage where it puts the results
and makes them available for the next layer in the hierarchy. We opted for this approach taking
into consideration the volume of mobile phone data sets. All intermediate results are stored
as using one of the widespread file formats: csv files. Thus, even if the implementation of a
layer is changed in the future and the new one is using another programming language/system,
these intermediate results can be easily accessed, any programming language having libraries/-
facilities to read/write such files. In figure 2.2 we depict this layered structure of the software
implementation, showing the components (layers) and the data flow between them.

From a user perspective all our software modules provide two types of functions:

High-level functions Provide an easy way to access the main functionality of each package,
hiding the complexity of implementation from the normal user.
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Figure 2.2: The layered structure of the software implementation.

Low-level functions They are fundamental functions to execute the core methods and usually
they are not exposed to users, but we decided to make them public and accessible for
external users having in mind that this is only a first tentative to implement such a complex
process and letting users access the intricacies of each computation step facilitates further
developments and improvements.

All packages have a reference manual (included in this document as annexes) and vignettes.
They are intended to show the continuously evolving status of the packages. At some initial
point this deliverable and the vignettes had a high degree of overlapping, but as we progress in
our work (beyond the ESSnet Big Data II project towards the new ESS Task Force on MNO data
and national and international projects) the packages and the vignettes will evolve.

2.3. The interfaces between layers

The modules composing the software stack are entirely decoupled. One layer receives some
data as input from the layer(s) below it and provides data to the upper layer(s) as output. Setting
a clear format for these data sets that flow from one layer to another make the layers independent
and easy to change their implementation. The single request is to adhere to the format of the
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data sets passed as input and to the ones provided as the output of the layer. We define the
interface between consecutive layers as the format of the data sets flowing from one layer to
another. In the following we describe the structure of these data sets that are passed between
consecutive layers. For these initial versions of our R packages the name of the columns in the
csv files are fixed but there is an ongoing work to standardize the formats (column names, data
types, accepted values, etc.) and define these standards using xsd and xml files. Then, all R
packages from our software stack will first read the files describing the structure of the data and
after that read the files themselves.

We mention that besides these data that flow vertically, from the bottom layer to the upper
one, there are other general parameters available to all layers from the secondary storage. We
don’t deal here with the input data for the first layer Data acquisition and preprocessing since it is
technology dependent and out of the control of statisticians. We only present how the output of
this layer should look like to be accepted as input for the geolocation layer.

Data aquisition and preprocessing layer
The outputs of this layer are a combination of data sets coming from the network after a

preprocessing stage. This preprocessing stage is necessary to eliminate all the parameters that
are dependent on a specific mobile network technology and transform the acquired data in a
simple form, suitable for statistical processing.

There are three main data sets produced by this layer: the network events registered by the
MNO during a period of time, a measure of the radio signal computed by the MNO in the center
of each tile of the grid and a file that define the coverage area (antenna cell) for each antenna
inside the geographical territory under consideration. Our methodological approach can use
one of two types of radio signal value: the signal strength or the signal quality (also known as
signal dominance). Both models of radio wave propagation are described in detail by Salgado
et al. (2020) and Oancea et al. (2019).

Below we give the structure of the csv files for the network events.

t, Antenna ID, Event Code, Device ID
...

There are four columns in this file:

t - the time instant when the event was generated and recorded by an antenna;

Antenna ID - a unique ID of the antenna that recorded this event;

Event Code - an integer that represents the code of the network event. Currently, our
methodology uses only the connection events, i.e. the events generated by a mobile device
when it connects to an antenna. We encoded this event with the value 0;

Device ID - a unique ID of the device that generated the event interacting with the antenna
under consideration. This ID uniquely identifies each mobile device in the whole data set;

The signal strength or the signal quality/dominance is a key information used to compute
the location likelihood and it must be computed in the center of each tile of the grid. The values
in this file depend on the technical parameters of the network as well as on the characteristics of
the geographical region (open field, cities etc.) It has the following columns:

Antenna ID, Tile0, Tile1, Tile2,..., TileN-1
...
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2 Introduction

The Antenna ID is the unique ID of the antenna and the rest of the columns represents
the IDs of the tiles of the grid: Tile0 means the tile with index 0, and so on. The tile indexing
mechanism follows the same schema described in Oancea et al. (2019): Tile0 is the tile from
the bottom left corner while TileN-1 is the tile from the upper right corner. Here N represents
the total number of tiles in the grid. We decided to use this (flat) file format because it avoids
redundancy and results in the smallest possible file size.

The coverage area of an antenna is defined as the geographical area where the signal strength
or the signal quality is greater than a predefined minimum value. The type of the physical mea-
sure used to compute this area (strength or quality) is determined by the handover mechanism
used by the network. For omnidirectional antennas this area is a circle while for directional
antennas it has a shape similar to an ellipse.

The coverage areas for all antennas are stored in a file with the following structure:

AntennaId,Cell Coordinates

The cell coordinates of the coverage area are saved using the WKT format. The geometric
object used to represent this area is a polygon which covers both cases: omnidirectional and
directional antennas. Below is an excerpt from such a file. For convenience, we erased some
points from the polygon defining this area. Each row of the file contains the unique antenna ID
and a WKT string that specifies the coverage area.

AntennaId,Cell Coordinates
2,POLYGON ((2400.5 7500.0, 2395.5 7650.5, 2381.5 7801.0, 2358.0 7950.0,
2325.0 8097.0, 2283.0 8242.0, 2232.0 8383.5, 2172.0 8522.0, 2103.5 8656.5,
2026.5 8786.0, 1942.0 8911.0, 1849.5 9030.0, 1750.0 9143.0, 1643.0 9250.0,
1530.0 9349.5, 1411.0 9442.0, 1286.0 9526.5, 1156.5 9603.5, 1022.0 9672.0,
...

2395.5 7349.5, 2400.5 7500.0))

3,POLYGON ((3400.5 2500.0, 3395.5 2650.5, 3381.5 2801.0, 3358.0 2950.0,
3325.0 3097.0, 3283.0 3242.0, 3232.0 3383.5, 3172.0 3522.0, 3103.5 3656.5,
3026.5 3786.0, 2942.0 3911.0, 2849.5 4030.0, 2750.0 4143.0, 2643.0 4250.0,
2530.0 4349.5, 2411.0 4442.0, 2286.0 4526.5, 2156.5 4603.5, 2022.0 4672.0,
...

3358.0 2050.0, 3381.5 2199.0, 3395.5 2349.5, 3400.5 2500.0))

The geolocation layer The inputs of this layer are provided by the previous layer and they
are network events file and signal file. Besides these files some general parameters like the
parameters of the grid overlapping the geographical area of concern are also needed.

There are two main types of outputs for this layer: the location probabilities for each device
and each tile and the joint location probabilities.

The first output is mainly a matrix with N rows and nTimes columns where N is the total
number of tiles in the grid and nTimes is the total number of time instants when the network
events were recorded. A value p(i, j) in this matrix is the location probability for tile i and
time instant j for the device under consideration. Here j is the index of the time instant in the
sequence of time instants, not the true (or real) time instant. Since:
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2.3 The interfaces between layers

we have a grid of such an extension that in a given time increment a device cannot reach
most of its cells, and

we have such a time and spatial resolution in the grid and the event information that a
device cannot reach most of the cells in a time increment

the matrices with location probabilities are sparse and the natural choice for storing these
matrices is to use one of the special file formats for sparse matrices. We used a format similar
to the Coordinate Text File (see for example Boisvert et al. (1997) for a full description of this
file format) to store these matrices where a row in the file contains a tuple (i, j, a[i, j]) giving the
number of row, column, and a nonzero entry in the matrix. The single between our file format
compared to Coordinate Text File format is that the first row specifying the total number of rows,
columns and nonzeros in the matrix is missing because we already have these numbers from
other sources (for example, in case of using simulated data from the simulation configuration
fil). Below we give the structure for the location probability file for a device.

tile, time, probL
...

It has three columns:

tile - is the tile index (see the tile indexing system mentioned above) and it corresponds to
the row number in the matrix;

time - is the time instant for which the location probability is computed. Its index in the
time instants sequence corresponds to the column number in the matrix;

probL - is the value of the location probability. Only non-zero values are stored in this file

We mention that there is a separate file for each mobile device.
The joint location probabilities files stores the probability of being in tile i at time instant

t− 1 and tile j at time instant t for all combinations of time consecutive time instants and tiles.
We store again only the non-zero probabilities. The structure of this file is given below:

time_from, time_to, tile_from, tile_to , probL
....

The columns in this file has the following meanings:

time from - is the initial time instant;

time to - is the final time instant;

tile from - is the initial tile;

tile to - is the destination tile;

probL - is the value of the location probability, i.e. the probability of a device to move
from tile tile from to tile to during the time interval (time from , time to). Only non-zero
values are stored.

We mention again that there is a separate file for each mobile device.
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2 Introduction

The deduplication layer The inputs of this layer are the outputs of the previous layer, i.e.
the two sets of files with the location probabilities and joint location probabilities for each device.
Besides these two data sets, the deduplication layer also needs some files that come directly
from the data acquisition and preprocessing layer: the network events file and the antennas cell
file. Both files were already described in the beginning of this section. An additional input of
this layer is an information from an external source that gives the apriori probability of a person
to hold two mobile devices.

The output for the deduplication layer is a single csv file that contains the duplicity proba-
bility for each device. It has two columns:

deviceID, dupP

Here deviceID is the unique Id of a device and dupP is the probability of the device to be in
a 2-1 correspondence with its owner. There is one row for each device registered by the network.

The aggregation layer The inputs of this layer are:

the csv file with duplicity probabilities produced by the previous layer;

a csv file defining the geographical regions for which we want to compute the number of
individuals detected by the network. We provide below an excerpt from such a file;

the general parameters defining the grid (number of rows and columns, the tile dimensions
on OX and OY axes);

the sequence of time instants when the network events were recorded.

The file defining the geographical regions is a simple csv file where each region is defined
as a collection of tiles. An example of such a file is given below:

tile,region
1560,3
1561,3
1562,3
1563,3
1564,3
1565,3
1566,3
1567,3
1568,3
....

We are aware that there is a certain degree of redundancy in this file, but the dimension of
such a file is relatively small and poses no difficulties in the process of processing it.

There are two outputs of this layer: the number of individuals in each region at each time
instant and the number of individuals moving from one region to another. Both numbers are
computed from a Poisson-multinomial distribution and since there is no analytical form of the
PMF we generate a sequence of random numbers from this distribution which can be used
to compute a point estimation (mean, mode, median), as well as accuracy measures (credible
intervals, posterior variance).

The number of individuals for each time instant and region is saved in a csv file like in the
example below:
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time, region, N, iter
0, 1, 10, 1
0, 1, 10, 2
0, 1, 10, 3
0, 1, 12, 4
0, 1, 13, 5
0, 1, 12, 6
...

time represents the time instant, region is the region number and N is the number of in-
dividuals. For each combination of time instant and region there are several random values
generated for N and their index is given in iter column.

The number of individuals moving from a region to another is saved in a csv file with the
structure given in the following example:

time_from, time_to, region_from, region_to, Nnet, iter
0, 10, 1, 1, 10, 1
0, 10, 2, 1, 0, 1
0, 10, 3, 1, 0, 1
0, 10, 4, 1, 1, 1
0, 10, 5, 1, 0, 1
0, 10, 6, 1, 0, 1
...

The name of the columns are self-explanatory. For each distinct combination (time from,
time to, region from, region to) there are several random values generated for the number of
individuals and their index is given in iter column.

The inference layer
The inputs of this layer are:

the posterior location probabilities, one file per device (we already described the structure
of these files);

a csv file with the duplicity probabilities for each device, which is the output of the
(deduplication) layer (already described);

a csv file defining the geographical regions (already described);

a csv with file the general parameters defining the grid (already described);

a csv with information from a population register, giving the population count for all
geographical regions under consideration;

a csv with the penetration rate of the mobile network operator for all geographical regions
under consideration;

a csv with the number of individuals for each time instant and region which is an output
from the aggregation package (already described);

a csv with the number of individuals moving from a region to another which is also an
output from the aggregation package (already described).

The information from the population register is organized on two columns as showed below:
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region, N0
1, 38
2, 55
3, 65
4, 39
...

Here, region is the region number and N0 is the population count in the corresponding
region.

The penetration rate file has a similar structure:

region, pntRate
1, 0.3684211
2, 0.4
3, 0.4153846
4, 0.4615385
...

The second column, pntRate, is the penetration rate obtained from the mobile network operator.

There are three main results of this package: the population count for each region computed
at the initial time instant, the population count for each region and all time instants t > t0, and
the origin-destination matrices for all pairs of time instants. All these results are computed in
three versions: using the Beta Negative Binomial distribution, using the Negative Binomial
distribution and using the state process Negative Binomial distribution. Details about how these
distributions are used to infer the target population are given by Oancea et al. (2019).

For the population at the initial time instant t0 the inference package generates two tables:
one with a some descriptive statistics about the distribution another one with the random values
generated for each region. The descriptive statistics of the population count distribution are
showed below:

region Mean Mode Median Min Max Q1 Q3 IQR SD CV CI_LOW CI_HIGH
1 43 33 39 11 133 30 51 21 17.90 41.96 21.00 73.00
2 59 51 56 21 126 47 68 21 15.85 27.09 37.00 88.00
3 82 68 78 38 185 68 94 26 20.84 25.38 54.97 121.00
4 39 32 37 14 92 30 45 15 11.58 30.07 23.47 59.50
5 77 75 74 31 185 62 90 28 23.07 29.84 47.50 120.00
6 47 42 44 15 152 36 56 20 17.32 36.59 25.00 78.06
7 72 62 69 28 174 57 84 26 21.36 29.56 43.50 109.00
8 25 24 24 11 107 20 29 9 8.22 32.48 15.97 39.50
9 67 66 66 36 132 57 75 18 14.40 21.53 46.50 91.50

10 48 50 46 20 110 39 55 16 13.01 27.16 31.50 70.00

The random values generated according to the corresponding distribution are organized in
a table with the following structure:

region N NPop
1 11.0 53.0
1 9.0 35.0
1 13.0 56.0
1 12.0 46.0
1 12.0 33.0
1 12.5 65.5

...
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where region is the region number, N is the number of individuals detected by the network
and NPop is the target population count.

The output for the population count distribution at time instants t > t0 is organized as a list
with one element for each time instant t. An element for a time instant t is also a list with one
or two items, depending on a parameter passed to the function that perform the computations
(see chapter 7 for details). The first item is a table with descriptive statistics and the second one
contains the random values generated according to the corresponding distribution. the structure
of these tables are identical with the previous ones.

The third output, the origin-destination matrices for all pairs of time instants time from-
time to is also a list with one element for each pair of time instants. An element for a pair
time from-time to is a list with one or two elements, as in the previous case. The first element
is a table with descriptive statistics for the origin-destination matrix with the structure as in the
example shown below:

region_from region_to Mean Mode Median Min Max Q1 Q3 IQR SD CV CI_LOW CI_HIGH
1 1 34 29 33 9 93 26 41 15 11.62 33.81 19.00 54.00
1 2 0 0 0 0 6 0 0 0 0.84 391.64 0.00 2.21
1 3 0 0 0 0 0 0 0 0 0.00 NaN 0.00 0.00
1 4 0 0 0 0 7 0 0 0 0.69 485.36 0.00 0.00
1 5 0 0 0 0 0 0 0 0 0.00 NaN 0.00 0.00
1 6 0 0 0 0 0 0 0 0 0.00 NaN 0.00 0.00
1 7 0 0 0 0 0 0 0 0 0.00 NaN 0.00 0.00
1 8 0 0 0 0 0 0 0 0 0.00 NaN 0.00 0.00
1 9 0 0 0 0 0 0 0 0 0.00 NaN 0.00 0.00
1 10 0 0 0 0 0 0 0 0 0.00 NaN 0.00 0.00
2 1 1 0 0 0 11 0 0 0 1.44 211.19 0.00 3.55
2 2 68 73 67 28 133 58 77 19 14.67 21.47 47.60 93.00
2 3 1 0 0 0 12 0 3 3 2.06 150.07 0.00 5.46
2 4 0 0 0 0 2 0 0 0 0.15 1020.93 0.00 0.00
2 5 0 0 0 0 7 0 0 0 0.99 279.62 0.00 2.91

...

The second element of the list gives the random values generated for the population moving
from one region to another and it looks like in the example below:

region_from region_to iter NPop
1 1 1 40
1 2 1 0
1 3 1 0
1 4 1 0
1 5 1 0
1 6 1 0

...

NPop is the random value while iter represents the index of the corresponding random
value in the whole set.

We summarize in the following tables all the files produced by different layers in the stack
and those provided from external sources. It is important to note that although the last 5 files
mentioned in table 2.2 are provided by our simulation software (the particle ”MNO1” was the
generic name given to our hypothetical MNO), the information contained in these files can be
provided by a real MNO.
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Table 2.1: Files produced by the R packages

File name Output of: Input for: Short description

postLocDevice ID.dt.csv destim deduplication,
inference

posterior location probabilities for a de-
vice, for each tile and time instant

postLocJointProbDevice ID.dt.csv destim aggregation posterior joint location probabilities for
a device, for each tile and time instant

duplicity.csv deduplication aggregation, infer-
ence, aggregation

duplicity probability for each device

nnet.csv aggregation inference random values for number of individ-
uals for each geographical region

nnetod.csv (.zip) aggregation inference random values for number of individ-
uals moving from one geographical re-
gion to another

Table 2.2: Files provided from external sources (simulation software, MNOs, NSOs)

File name Source Description

grid.csv NSO Defines the parameters of the grid overlapping the
geographical area considered

regions.csv NSO Defines the geographical regions as sets of tiles of
the grid

pnt rate.csv MNOs, other national telecommunica-
tion authorities

Defines the penetration rate of an MNO for each ge-
ographical region

pop reg.csv NSO Gives the population count for each region, from a
population register

AntennaCells MNO1.csv MNO Defines the mobile network cells
AntenaInfo MNO MNO1.csv MNO Gives the network events registered inside a geo-

graphical area, during a time period
SignalMeasure MNO1.csv MNO Gives the signal strength/quality emitted by each

antenna in the center of each tile of the grid
antennas.xml MNO Contains technical parameters of each antenna
simulation.xml NSO, MNO Gives some general parameters such as start time,

end time, time increment, etc.
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The data acquisition and preprocessing layer

3.1. MNO data

Network events data ensure the operation of the network but as far as we know they are
either not currently stored in by any MNO or need some investment to be used for statistical
purposes. So, the first step in implementing our methodological approach would be to design
an acquisition system for the network events. Such a system is technology dependent (GSM,
UMTS, LTE, . . . ) and can only be designed and put in place by the MNO itself. The network
events are usually captured at the interfaces of the core network by means of installing network
probes (Ostermayer et al., 2016). At least the following variables should be saved:

timestamp - the exact time instant when the event was captured;

deviceID - a unique identifier of the mobile device that generated the event (could be for
example IMEI);

antenna/cell ID - uniquely identifies the antenna (cell) the mobile device is currently
connected to;

event - a code for the captured event.

The network events data sets tend to be very large therefore it is likely that specific big data
technologies such as a NoSQL database or the Hadoop Distributed File System should be used
to store these data (Lyko et al., 2016). There are technical solutions to interface such systems
with R to allow data processing: see for example the nodbi R package Chamberlain et al.
(2019) that allows R to interact with MongoDB, Redis, CouchDB, Elasticsearch, SQLite or
more specialized packages such as mongolite Ooms (2014) package allowing an R-mongodb
interface, R4CouchDB Bock (2017) allowing R to access CouchDB, RCassandra provinding an
interfce between R and Apache Cassandra or rhdfs package that allows R to access files on a
HDFS. An overview of the data acquisition process for network events can be found by Wang
et al. (2017).

Once acquired, the network events should be depersonalised and preprocessed to be brought
in a usable form for our statistical needs. The term mobile network data for statistical purposes
makes reference to an abstraction which should be given a concrete substantiation within the
extraordinarily complex data ecosystem associated to cellular telecommunication networks. All
MNOs tend to underline the resources needed to preprocess and prepare data for statistical
purposes, therefore a clear win-win partnership should be put in place between NSIs and MNOs.
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Although there are technologies borrowed from the Privacy-Preserving Computation Tech-
niques area like the Secure Multi Party Computation technique that could allow NSIs to process
the network events data remotely in a secure environment currently, we envisage that execution
of almost all modules should be conducted by MNOs in their own premises.

3.2. Synthetic data

The use of synthetic data to develop the implementation of the processes and the validation
of the methodology is not only a matter of the lack of real data. Synthetic data are essential
to check that every step of the process is executed as expected and to have the possibility to
compare the possible methods againts the reality. With the aim to build synthetic dataset it has
been crucial the usage of a simulator.

3.2.1. The simulation software

A simulator for network event data has already been developed as it is described in Oancea
et al. (2019). This tool has given the opportunity to deal with synthetic data that come from
scenarios with real characteristics. Figure 3.1 shows a schematic view of the data flow in the
process of generating synthetic network events data.

Simulation software

persons.xml

antennas.xml

simulation.xml

probabilities.xml

Map.wkt

antennas.csv

persons.csv

Signal strength/quality

Antenna_cells.csv

Grid.csv

AntennInfo.csv

Figure 3.1: Data flow diagram

The simulation software takes as input a series of configuration files:
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a Map file - it is the map where the simulation take place. It is given as a WKT file that
contains only the external boundary of the geographical area of concern;

a file with the general parameters of the synthetic population - named persons.xml
in Figure 3.1 which contains information like the number of persons in the synthetic
population, the age distribution, the share of males/females, the speed of the displacement,
the share of the population starting from the same initial position in each simulation;

a file with the location and the technical parameters of the antennas needed to compute
the signal strength or signal quality/dominance;

a file with parameters for the simulation process. This file define the general parameters
of the simulation: the initial and the final time instant of the simulation as well as the time
increment, information about the mobile network operators, the type of the displacement
of persons, the type of the handover mechanism, the dimensions of a tile in the grid and
the name of some of the output files;

an optional file that provides information necessary to compute the location probabili-
ties of the mobile devices. These probabilities were used only in the initial process of
development, now the destim package provides a more accurate estimation of them.

The software outputs the synthetic information generated during the simulation in csv files:

a grid file that contains the full description of the rectangular grid overlapped on the map,
named grid.csv in Figure 3.1;

a file that stores the antennas location on the map at the initial time instant, named
antennas.csv in Figure 3.1;

a file that contains the exact position on the map and grid of each person, at each time
instant of the simulation, named persons.csv in the same figure. The role of this file was
essential in the process of developing the methodological framework because it provides
”the ground truth” allowing us to estimate the accuracy of our methods. Such information
is not available for real MNO data, therefore we emphasize again the importance of the
simulation software;

a file where the signal strength / quality is saved, depending on the handover mechanism
used. The signal strength / quality is computed in the center of each tile of the grid named
SignalMeasure.csv;

a file that contains the coverage areas for each antenna, named AntennaCells_[MNOname].csv
in Figure 3.1;

a file that contains the events generated by the interaction between mobile devices and
antennas, together with the exact location of the mobile devices that generated the events,
named AntennaInfo_MNO_[name].csv in Figure 3.1.

Some of these configuration and output files (simulation.xml, antennas.xml,
AntennaInfo [MNOname].csv, AntennaCells [MNOname].csv, SignalMeasure.csv)
are used by the R packages (see also table 2.2).

A full description of the simulation software was already provided by Oancea et al. (2019).
The software is freely available in the form of the source code together with the makefile neces-
sary to build the executable at the following address: https://github.com/MobilePhoneESSnetBigData/
simulator. To facilitate the process of installing and running the program we also provide a
docker image.
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3 The data acquisition and preprocessing layer

3.2.2. Simulation scenarios

Name of the scenarios: scenario 1 2 3 4 5 6

1. number of antennas: total number of antennas in the net.

2. type connection: strength or quality.

3. tile size: in meters.

4. movement type: drift in case of random walk closed map drift or nodrift in case of ran-
dom walk closed map.

5. number of persons: total number of persons in the population (with and without device).

6. speed car: in meter per second. Remember this is in mean speed, not the maximum speed.

At the time to build a good scenario there are some points to avoid:

Lack of signal: It can appear in two ways.

Useless Antennas. Many antennas are like deactivated because their signal is too low
then there is no tile from which a device can be connected to them.

Tiles without coverage. There are some tiles inside the map where no signal is received
from any antenna.

Excessive domination of one antenna. If some antenna is dominating a large part of the terri-
tory, it causes problems in several steps. In the case of geolocation, in the area of coverage
of this antenna the accuracy is much worse. In the case of duplicity detection, it causes an
increase in the rate of false positive. Since all devices connected to this antenna seems to
be mistakenly from the same individual.

Several scenarios have been built with the aim to study the behaviour of the developed
methodology. However, there is one scenario that has been used more deeply, scenario 1,
explained below. After this scenario just a mention to other possibilities but without results
shown in this document.

3.2.2.1. Scenario 1: scenario 70 strength 250 drift 500 16

This scenario has been built with the aim of correct the problems detected in scenario 0. In
this case there are two types of zones but not so different. In the left upper corner there is a
semi-urban area while in the right bottom corner there is a urban area.

Table 3.1: Main characteristics of the scenario 1

No. Antennas with signal 70
No. Directional antennas 3
Tile size (m) 250
No. Tiles 1600
No. Tiles without signal 0
Tiles without signal inside the map no

The Figure 3.2 shows the signal strength (RSS) of each antenna in green with different in-
tensity of the colour depending on the strength. Over that the coverage area of each antenna is
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Figure 3.2: Antennas with signal and Tiles without signal

represented in yellow. All the antennas that give some signal to some tile are drawn in red with
their corresponding label. The antennas without signal would be represented just with a dot
point in black. Moreover, all the tiles without any signal from any antenna are marked with a
blue dot point.

One can observe that there is no antennas deactivated and there is no tiles without coverage
inside the map.

3.2.2.2. Scenario 2: scenario 20 strength 250 drift 500 16

This scenario will be built with the aim of analyse a territory with low density of antennas.
Some different areas will be represented but paying attention to avoid the possible domination
of any antenna.
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Table 3.2: Main characteristics of the scenario 2

No. Antennas with signal 20
No. Directional antennas 3
Tile size (m) 250
No. Tiles 1600
No. Tiles without signal 0

3.2.2.3. Scenario 3: scenario 150 strength 250 drift 500 16

This scenario will be built with the aim of analyse a territory with high density of antennas.
Some different areas will be represented but paying attention to avoid that some antennas are
useless due to lack of giving signal to any tile or to have the whole domination of another
neighbour antenna.

Table 3.3: Main characteristics of the scenario 3

No. Antennas with signal 150
No. Directional antennas 9
Tile size (m) 250
No. Tiles 1600
No. Tiles without signal 0
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4

The geolocation layer

4.1. Introduction

In this chapter, the estimation of the spatial distribution of the devices is shown by following
the methodology explained by Salgado et al. (2020) and by using the implementation done in
the R package destim (Sanguiao et al., 2020). We illustrate the construction and adaptation of a
hidden Markov model (HMM) to estimate the geolocation of a mobile device d in a reference
grid. In sections 4.2 and 4.3 we give some insights on each computational step, showing how to
use destim functions step by step for each stage of the location probabilities computation and
in section 4.4 we provide an end-to-end R script that starts from input data and produces the
location probabilities.

First, some remarks about the notation of the basic elements in our model. Td(t) is a random
variable that represents the reference grid tiles where the device d is located at time t. They are
the state (latent) variables in the HMM. The observed variables are the events in the network
denoted as Ed(t) which are the identification of the antenna connecting to the mobile device d at
time t. The target quantities will be the probability mass functions associated to each random
variable Td(t) and the joint probability functions for two consecutive time instants t and t′. Any
auxiliary information will be denoted by Iaux.

Thus, in mathematical terms, we shall focus on:

γdti ≡ P (Tdi(t)|Ed, Iaux) = P (Td(t) = i|Ed, Iaux) (4.1a)
γdtij ≡ P

(
Tdi(t), Tdj(t

′)|Ed, Iaux) = P
(
Td(t) = i, Td(t

′) = j|Ed, Iaux) . (4.1b)

We convene in calling (4.1a) location probability for mobile device d to be in tile i at time t
and calling (4.1b) joint location probability for mobile device d to be in tiles i and j in consecu-
tive time instants t and t′.

The estimation of the target variables is done with the procedure explained in the following
stepwise procedure:

1. Model construction.

HMM initialization

Time discretization and reduction of parameters

Construction of the emission model
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4 The geolocation layer

Construction of the transition model

2. Model fitting.

Computation of the likelihood

Parameter estimation (likelihood maximization)

Posterior location probabilities estimation

The initial probability distribution

4.2. Model construction

In this section, we show how to use the functions in the R package destim for the geolocation
of mobile devices. We will use the simulation with 70 antennas, see the simulation scenarios
description in chapter 3.

4.2.1. HMM initialization

The representation of the territory is done in the model by using a grid. Then, the first step
is to create a basic grid model. In our simulation scenario, we read the grid parameters from the
simulation specification file:

gridParam <- fread(’grid.csv’, sep = ’,’, header = TRUE, stringAsFactors=FALSE)
ncol_grid <- gridParam[[’No Tiles Y’]]
nrow_grid <- gridParam[[’No Tiles X’]]
xDim_grid <- gridParam[[’X Tile Dim’]]
yDim_grid <- gridParam[[’Y Tile Dim’]]

Then, we use the function HMMrectangle of the package destim to create a rectangle model.
This model represents a rectangular grid with square tiles, where you can only stay in the same
tile or go to a contiguous tile. This means that there are nine non zero transition probabilities
by tile. Moreover, horizontal and vertical transitions have the same probability, and diagonal
transitions also have the same probability (but different to vertical and horizontal).

The number of transitions can be very high even for small rectangles. Let us suppose a small
rectangle of 10x10 tiles, it would have 784 transitions. Fortunatelly, we only need to fit two free
parameters as it is explained in the following. Note that the number of constraints plus the
number of free parameters agrees with the number of transitions.

In the present example, with the simulation of 70 antennas, a rectangular grid model of
40x40 tiles is created over the territory as follows:

c(nrow_grid, ncol_grid)
#> [1] 40 40
model <- HMMrectangle(nrow_grid, ncol_grid)

4.2.2. Time discretization and reduction of parameters

In practice, the package allows any linear constraint between the transition probabilities.
There is also some support for non linear constraints.
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4.2 Model construction

Thus, we can use constraints to reduce the number of parameters as much as wanted. It
is a good idea to keep small the number of (free) parameters: on one hand the likelihood
optimization becomes less computationally expensive and on the other hand we get a more
parsimonious model.

Let us see how to use the time discretization to have a reduction of parameters. The idea is
based on the relation of the following three parameters, (i) the tile dimension l (we assume a
square grid for simplicity), (ii) the time increment ∆t between two consecutive instances, and
(iii) an upper bound vmax for the velocity of the individuals in the population.

If we denote by NT the number of tiles, we are going to have not less than NT states, and for
more complex models possibly more, so let us say we have O(NT ) states. In a hidden Markov
model, this means that we have O(N2

T ) transition probabilities to estimate. Of course, this is
not viable, so we are going to fix all transition probabilities to non-contiguous tiles to 0. With
this aim, we impose that in the time interval ∆t, the device d at most can displace from one
tile to a contiguous tile. Under this condition, we can trivially set ∆t . l

vmax
. For example, if

vmax = 150km/h ≈ 42ms−1, then ∆t . 100
42 ≈ 2s.

In real data, this restriction may not be fulfilled, for example in case that in the dataset the
device d is detected at longer time periods, e.g. once in a minute. Then we carry out time padding,
i.e. the artificial introduction of some missing values between every two observed values.

vMax_kmh <- 150
vMax_ms <- vMax_kmh * 1000 / 3600
timeIncrem <- 10
distMax <- vMax_ms * timeIncrem
pad_coef <- as.integer(ceiling(distMax / max(xDim_grid, yDim_grid))) + 1

events.dt <- fread(’AntennaInfo_MNO_MNO1.csv’,sep = ’,’,stringAsFactors = FALSE,
colClasses=c(’integer’, ’character’, ’character’,’character’,
’numeric’, ’numeric’, ’character’))
antennas_deviceID <- unlist(events.dt[deviceID == "103", c("antennaID")])

antennas_deviceID_pad <- rep(NA, pad_coef * length(antennas_deviceID))
antennas_deviceID_pad[seq(1,
length(antennas_deviceID_pad), by = pad_coef)] <- antennas_deviceID
antennas_deviceID[1:5]
#> antennaID1 antennaID2 antennaID3 antennaID4 antennaID5
#> "33" "33" "33" "33" "33"
antennas_deviceID_pad[1:15]
#> [1] "33" NA NA "33" NA NA "33" NA NA "33" NA NA "33" NA
#> [15] NA

4.2.3. Construction of the emission model

Up to this point we have as input data the sequence of observed and missing values
atn ∈ {0, 1, . . . , NA} for tn = 0, 1, . . . , T where NA denotes the number of antennas in the
geographical territory under analysis (0 stands for the missing value). The emission model is
specified by the HMM emission probabilities bia = P

(
Etn = a

∣∣Ttn = i
)
, where a stands for the

antenna ID and i denotes the tile index. They constitute the entries of the emission matrix B.
At most we need to compute NT ×NA emission probabilities to conform the matrix B = [bia],

25



4 The geolocation layer

i = 1, . . . , NT , a = 1, . . . , NA. This is done once and for all t (since we assume time homogeneity).
Then, the computational cost of the emission probabilities is fixed in time.

Now, to compute bia we borrow the use of the simplified radio propagation model from the
static analysis (see Tennekes et al., 2020) so that we can compute numerically these probabilities.
Again, this is a modelling choice and several options could be possibly considered (see Appendix
A of Salgado et al., 2020).

If missing values are to be used according to the preceding section, for numerical conve-
nience later on the corresponding emission probabilities can be conveniently set to 1, i.e. bi0 =
P
(
Etn = 0

∣∣Ttn = i
)

= 1. This will greatly facilitate the expression of the HMM likelihood and
its further optimization. Remind that this probability is not real and is completely meaningless.

Notice that having the numerical values of the emission probabilities will allow us to simplify
the computation of the likelihood for the HMMs reducing its parameter dependency only to the
transition model.

Returning to the code, the emission probabilities are also stored in a matrix. Of course, the
number of actually observed events is expected to be much smaller than the number of possible
events (all antennas in the network). It could happen, though, that the number of columns of
the emissions matrix matches the number of actually observed events. This way we do not save
memory with the matrix, but it allows us to do the estimations. Note that, in particular, if any
possible event corresponds to a column of the matrix of emissions, each row sums to 1. This
does not happen in general, as the columns do not need to be exhaustive.

As we have not specified the emission probabilities in the HMM object created, they are set
to NULL by default.

emissions(model)
#> NULL

Emission probabilities are expected to be computed separately, so the model is ready to
directly insert the emissions matrix. We build the emission matrix based on the radio propaga-
tion model of our choice. Let us see an example of how to build the matrix from a data.table
containing information about the radio propagation model.

RSS.dt <- fread(’SignalMeasure.csv’,sep = ’,’,
header = TRUE, stringAsFactors = FALSE)
RSS.dt
#> antennaID tile RSS SDM RSS_ori SDM_ori nAntCover
#> 1: 01 1560 -75.198 0.5989279 -75.198 5.989279e-01 1
#> 2: 02 1560 NA NA -112.091 7.867742e-12 1
#> 3: 03 1560 NA NA -109.399 3.228188e-12 1
#> 4: 04 1560 NA NA -120.112 2.097113e-16 1
#> 5: 05 1560 NA NA -117.471 2.504505e-14 1
#> ---
#> 111996: 66 39 NA NA -107.986 1.151466e-11 1
#> 111997: 67 39 NA NA -105.883 7.642586e-11 1
#> 111998: 68 39 NA NA -107.646 1.563671e-11 1
#> 111999: 69 39 NA NA -115.541 1.283116e-14 1
#> 112000: 70 39 NA NA -112.674 1.693854e-13 1
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#> rasterCell
#> 1: 1
#> 2: 1
#> 3: 1
#> 4: 1
#> 5: 1
#> ---
#> 111996: 1600
#> 111997: 1600
#> 111998: 1600
#> 111999: 1600
#> 112000: 1600

This data.table named RSS.dt provides the following variables:

column antennaID: identification of the antenna for which we provide the radio propa-
gation model information.
column tile: identification of the tile for which we provide the radio propagation model
information.
column RSS ori: signal strength (in dBm) from the corresponding antenna at the center
of the corresponding tile according to the RSS model.
column RSS: same value as RSS ori when the strength is above the chosen threshold in
the specification files; NA otherwise.
column SDM ori: signal dominance measure from the corresponding antenna at the center
of the corresponding tile according to the SDM model.
column SDM: same value as SDM ori when the signal dominance measure is above the
chosen threshold in the specification files; NA otherwise.
column rasterCell: equivalent numbering of the tiles according to the package raster.

Then, the probabilities are obtained and the emission matrix is built as follows:

emissionProbs.dt <- RSS.dt[
, watt := 10**((RSS - 30) / 10 )][

, eventLoc := watt / sum(watt, na.rm = TRUE), by = ’rasterCell’][
is.na(eventLoc), eventLoc := 0][

, watt := NULL]
emissionProbs.dt <- emissionProbs.dt[

, c("antennaID", "rasterCell", "eventLoc"), with = FALSE][
order(antennaID, rasterCell)]

frmla <- paste0(c(’rasterCell’, ’antennaID’), collapse = ’ ˜ ’)
emissionProbs.mat <- as.matrix(
dcast(emissionProbs.dt, as.formula(frmla), value.var = ’eventLoc’)[

, rasterCell := NULL]
)

dimnames(emissionProbs.mat) <- list(
as.character(unique(emissionProbs.dt[[’rasterCell’]])),
as.character(unique(emissionProbs.dt[[’antennaID’]])))
dim(emissionProbs.dt)
#> [1] 112000 3
emissionProbs.dt
#> antennaID rasterCell eventLoc
#> 1: 01 1 1
#> 2: 01 2 1
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#> 3: 01 3 1
#> 4: 01 4 1
#> 5: 01 5 1
#> ---
#> 111996: 70 1596 0
#> 111997: 70 1597 0
#> 111998: 70 1598 0
#> 111999: 70 1599 0
#> 112000: 70 1600 0

The number of rows arise from the number of different events (70 different antennas) and
the number of tiles (1600). The inclusion of missing values for the time padding is dealt with
internally during the fitting. The assignment to the model is immediate.

emissions(model) <- emissionProbs.mat

Of course, in practice, models will have many states and will be created automatically. While
the purpose of the package destim is estimation and not automatic modeling (at least for the
moment), some functions have been added to ease the construction of example models.

A very simple function to create emissions matrices is also provided. It is called createEM
and the observation events are just connections to a specific antenna. The input parameters are
the dimensions of the rectangle, the location of towers (in grid units) and the distance decay
function of the signal strength (Tennekes et al., 2020). In this case, each tile is required to be able
to connect to at least one antenna, so no out-of-coverage tiles are allowed. Note that this is not a
requirement for the model, just a limitation of the function createEM.

If the case were a network of 7 antennas, the creation of the emission matrix can be done as
follows:

tws <- matrix(c(3.2, 6.1, 2.2, 5.7, 5.9, 9.3, 5.4,
4.0, 2.9, 8.6, 6.9, 6.2, 9.7, 1.3),
nrow = 2, ncol = 7)
S <- function(x) if (x > 5) return(0) else return(20*log(5/x))
emissionProbs.mat2 <- createEM(c(nrow_grid, ncol_grid), tws, S)
dim(emissionProbs.mat2)
#> [1] 1600 7

4.2.4. Construction of the transition model

Now we specify a model for the transition between states (tiles in our simple rectangular
model). Let A = [aij ] be the transition matrix, with aij = P

(
Tjt
∣∣Tit). In order to obtain the

elements of this matrix, we make use of our preceding imposition by which an individual
can at most reach a contiguous tile in each contiguous time. Then, to model these transitions
rectangular isotropic conditions are imposed. Let θ1 be the probability of vertical/horizontal
transition and θ2 the probability of diagonal transition, as represented in Figure˜4.1. Moreover,
row-stochasticity conditions have to be fulfilled as well.

All these conditions lead to having a highly sparse transition matrix A with up to 4 terms
equal to θ1 and θ2 (each) per row and diagonal entries guaranteeing row-stochasticity.
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1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

Figure 4.1: Example with a regular square grid of dimensions 4× 4.

For a detailed explanation of the elements of the transition matrix (see Appendix A of Sal-
gado et al., 2020).

Returning to the code, we can see that there are as many states as tiles (nrows*ncols) in the
grid and the corresponding transitions to all possible movements in the grid, consecutive tiles.

nstates(model)
#> [1] 1600
ntransitions(model)
#> [1] 13924

The transitions with non zero probability are represented by an integer matrix with two
rows, where each column is a transition. The first row is the initial state and the second the final
state. Of course, the states are represented by an integer number. The columns of the matrix are
ordered first by initial state and then by final state.

transitions(model)[1:2, 1:10]
#> [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
#> [1,] 1 1 1 1 2 2 2 2 2 2
#> [2,] 1 2 41 42 1 2 3 41 42 43

The constraints can be shown by using constraints(model). As we have not specified
any constraints, one constraint by state is introduced, the sum of the transition probabilities for
a given initial state has to be one (row-stochasticity of the transition matrix). Otherwise, the
transition matrix would not be stochastic. In general, the package adjusts this specific kind of
constraints automatically.

The constraints are represented as the augmented matrix of a linear system of equations. The
transition probabilities must fulfill the equations, with the same order as shown in transitions
function. So, the first coefficient in each row is for the transition probability of the transition
shown in the first row of the matrix of transitions, and so on.

Both transitions and constraints can be specified as parameters when creating the model. It
is also possible to add transitions and constraints later. Let us suposse that we add the following
transitions:

model0 <- addtransition(model, c(1,22))
model0 <- addtransition(model0, c(2,33))
transitions(model0)[, 1:12]
#> [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12]
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#> [1,] 1 1 1 1 1 2 2 2 2 2 2 2
#> [2,] 1 2 22 41 42 1 2 3 33 41 42 43

Now it becomes possible to transition from state 1 to state 22, and from state 2 to state 33.

Moreover, we can add constraints to the model. The constraints matrix is a row major sparse
matrix. The function to add new constraints is addconstraint whose second argument can
be a vector or a matrix. If it is a vector, it is expected to be a set of transition probabilities indexed
as in field transitions of the model. In this case the constraint added is the equality between
the referred probabilities of transition. The purpose of these equality constraints is to improve
performance as they might be a lot and can be treated easily.

If the second argument is a matrix, it is expected to be a system of additional linear equalities
that the model must fulfill. Thus, the new equations are added to the field constraints of the
model. While it is possible to use a matrix to add equality constraints, it is not recommended
because of performance. In any case, previous constraints of the model are preserved.

Now, an example of how an equality constraint is added. In this case the second transition
probability is equal to the fourth one. In the matrix of transitions we can see that those transitions
represent: transition 2 is from state 1 to state 2 and transition 3 is from state 1 to state 22. Then,
to add the equality constraint that relate these two transitions is done as follows:

dim(constraints(model0))
#> [1] 13922 13927
model0 <- addconstraint(model0, c(2, 3))
dim(constraints(model0))
#> [1] 13923 13927

Once the model is fitted, the values of the transition matrix can be obtained from the HMM
object in the element names as model$parameters$transitions. This is a vector with the
values corresponding to each column of the matrix transitions(model).

4.3. Fitting the model

Once we have defined an appropriate model for our problem, the next step is to estimate the
free parameters. As it has been already stated, emissions are known, so there are no emission
parameters to fit. The initial state is either fixed or set to the steady state, thus the only parame-
ters to fit in practice are the transition probabilities.

The method used to estimate the parameters is maximum likelihood, and the forward
algorithm computes the (minus) log-likelihood. A constrained optimization is then done. Note
that the EM algorithm is generally not a good choice for constrained problems, so it is not used
in the package destim. Let us see in detail how the model is fitted.

4.3.1. Parameter estimation

The estimation of the unknown parameters θ = (θ1, θ2 is conducted maximizing the like-
lihood. The restrictions coming from the transition model makes the optimization problem
not trivial. Notice that the EM algorithm is not useful. Instead, we provide a taylor-made
solution seeking for future generalizations with more realistic choices of transition probabilities
incorporating land use information. Formally, the optimization problem is given by:
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max h(a)

s.t. C · a = b

a ∈ [0, 1]d,

, (4.2)

where a stands for the nonnull entries of the transition probability matrix A, the objective func-
tion h(a) is derived from the likelihood L, see the following section for more detail, expressed in
terms of the nonnull entries of the transition matrix A, and the system C · a = b expresses the
sets of restrictions from the transition model (see Appendix A of Salgado et al., 2020).

The number of restrictions nr not involving zeroes depends very sensitively on the particular
transition model chosen for the displacements. Then, we have that C ∈ Rnr×d and b ∈ Rd. The
objective function h(a) is indeed a polynomial in the non-null entries a.

This problem can be further simplified using the QR matrix decomposition. Write C = Q ·R,
where Q is an orthogonal matrix of dimensions nr × nr and R is an upper triangular matrix of
dimensions nr × d. Then we can rewrite the linear system as R · a = QT · b and we can linearly
solve variables a1, . . . , anr in terms of variables anr+1, . . . , ad:(

a1 · · · anr
)T

= C̃nr×(d−nr)
(
anr+1 · · · ad

)T
.

The system (4.2) then reduces to

max h̃(anr+1, . . . , ad)

s.t. 0 ≤ C̃ ·
(
anr+1 · · · ad

)T ≤ 1.
(4.3)

The solution a∗ to problem (4.2) will be introduced in the transition probability matrix, which
will thus be denoted by A∗.

In terms of optimization, all we have to do is a linear constrained non-linear optimization in
the same space. The linear constraints may seem to be a lot, but in practice, a good modeling
will make most of the constraints equal, as most of the transition probabilities are going to be
equal.

Usually, algorithms for constrained optimization will require an initial value in the interior
of the feasible region. To get such initial value, the following algorithm is used:

1. Set transition probabilities to independent uniform (0, 1) random variables.
2. Now the constraints do not hold, so the closest point in the constrained space is got

through Lagrange multipliers.
3. Now some of the probabilities might be greater than one or smaller than zero. Those are

set once again to independent uniforms.
4. Repeat steps 2 and 3 till all transition probabilities are between zero and one.

As already stated, the initial state is set to steady if not fixed. The steady state is calculated
as the (normalized to sum up one) solution to (A− I)x = 0, where I the identity and the last
component of x is set to one divided by its dimension. This should be enough because these
Markov chains are expected to be both irreducible and aperiodic, otherwise we would have
strange movement restrictions.
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Returning to the code, the next step is to estimate the parameters of the model, by constrained
maximum likelihood. But first, as already said, the optimizer usually requires an initial guess,
so the function initparams obtains an initial random set of parameters.

model <- initparams(model)
all(model$parameters$transitions < 1)
#> [1] TRUE
all(model$parameters$transitions > 0)
#> [1] TRUE
range(constraints(model) %*% c(model$parameters$transitions, -1))
#> [1] 0.000000e+00 4.440892e-16

All transition probabilities are between zero and one and the constraints hold, but no ob-
served data is still used.

The function minparams reduces the number of parameters of the model to the number of
free parameters, as already explained. In the present example, the model has 13924 transitions
but the number of parameters is two.

model <- minparams(model)
rparams(model)
#> [1] 0.33528506 0.06178254

Notice that it does not matter the size of the problem, only two parameters are really needed.
It is possible to assign values with rparams, as the optimizer does, but some transition prob-
ability might move outside the interval [0, 1]. The optimization process avoids this problem
constraining by linear inequalities.

Now the model is ready to be fitted. Of course, the observed events are needed. Since we
have the emissions matrix in the model, the observed events is just an integer vector, that refers
to the appropriate column of the emissions matrix. The length of that vector is the number of
observed times in a device. It is possible to introduce missing values for the observations as NA,
obviously when at a time there is no event.

obs <- sapply(antennas_deviceID_pad,
function(x) ifelse(!is.na(x),
which (x == colnames(emissionProbs.mat)), NA))
model_dev <- fit(model, obs)
#> Loading required package: Rsolnp
rparams(model_dev)
#> [1] 0.9910131 0.9820262

4.3.2. Computation of the likelihood

The likelihood is trivially computed using the numerical proviso of setting emission probabil-
ities equal to 1 when there is a missing value in the observed variables. The general expression
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for the likelihood is

L(E) =

NT∑
i0=1

· · ·
NT∑
iT=1

P (Tt0 = i0)

N∏
n=1

P
(
Ttn = in|Ttn−1 = in−1

)
P
(
Etn
∣∣Ttn = in

)
(4.4a)

=

NT∑
i0=1

· · ·
NT∑
iT=1

P (Tt0 = i0)

N∏
n=1

ain−1in(θ)binatn (4.4b)

Notice that the emission probabilities only contribute numerically providing no parameter
whatsoever to be estimated.

Returning to the code, the function to compute the likelihood for a model and a vector
of given observations of events is logLik. Despite the name, logLik returns minus the log-
likelihood, so the smaller the better.

logLik(model, obs)
#> [1] 26.29721
logLik(model_dev, obs)
#> [1] 11.57194

4.3.3. Posterior location probabilities estimation

Once the HMM has been fitted, we can readily apply the well-known forward-backward al-
gorithm (Bishop, 2006) to compute the target probabilities γdti and γdtij (see equations (4.1)). No
novel methodological content is introduced at this point. For our implementation, as suggested
by Bishop (2006), we have used the scaled version of the algorithm.

We can estimate the smooth states by means of the forward-backward algorithm. The smooth
states are the mass probability function of the states given the observed data (and the model),
thus they summarize all the information available for a given time t. So one of the outputs of the
package are the smooth states, that can be aggregated to get a space distribution of the number
of devices as explained in (section 4.2 of Salgado et al., 2020).

The other main output of the package is the posterior joint mass probability function for
two consecutive instants t, t+ ∆t of the states. As it is a posterior probability, it is once again
conditioned on all the information available, but it is more dynamic because its time reference is
now an interval. A possible analogy would be the smooth positions and speeds of a particle.
The former would correspond to position and the later to speed.

These target probabilities are the main output of the geolocation estimation. Both outputs
are needed to estimate the target population in next steps of the process as it is shown in the
following sections of this document.

Returning to the code, the function sstates returns the smooth states, i.e. the estimation of
the posterior location probabilities. The output is given as a matrix of number of states × number
of observations (missing values included) dimensions, i.e. number of raster cells × times. So each
column represents the space distribution in its corresponding time slot.
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postLocP <- sstates(model_dev, obs)

dim(postLocP)
#> [1] 1600 270

image(matrix(postLocP[, 4], ncol = ncol_grid))

The function scpstates returns the (smooth) joint probability mass function for consecutive
states, analogous to the usually denoted ξij probabilities in the Baum-Welch algorithm (once
convergence is achieved). The result is a matrix with the raster cells in the rows and the raster
cells per time in the columns. Then, each set of columns corresponding to the same time
represents a space bi-variant distribution matrix. The probability of the consecutive pair of states
(i, j) from time t to t+ ∆t can be found in the row i and column (t− 1) ∗NT + j. The transition
matrix only allows transitions to contiguous points, so it is almost diagonal per blocks of times.

postJointLocP <- scpstates(model, obs)
dim(postJointLocP)
#> [1] 1600 430400

It is difficult to visualize these probabilities in two dimensions.
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4.3.4. The initial probability distribution

The initial probability distribution P (Tt0) has not been specified yet. With abundance of data,
it has very little incidence on the final results. In our implementation two options are provided:
(i) the stationary state, i.e. the eigenvector of A with eigenvalue 1 and (ii) any distribution
provided by the user. The difference will be ultimately in terms of computational cost (provided
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we have abundance of data).

Returning to the code, let us see in the present example how to fit the model with two differ-
ent initial probability distribution: the default uniform distribution and the so-called network
distribution (see Tennekes et al., 2020). The uniform is equivalent to the previous executions
and the network is obtained by using the information in the network about the signal strength
of the antennas.

First, we prepare the initial distribution vectors.

nTiles <- ncol_grid * nrow_grid
initialDistr_RSS_uniform.vec <- rep(1 / nTiles, nTiles)

initialDistr_RSS_network.dt <- RSS.dt[
, watt := 10**( (RSS - 30) / 10 )][

, total := sum(watt, na.rm = TRUE)][
, list(num = sum(watt, na.rm = TRUE), total = unique(total)),

by = ’rasterCell’][
, prior_network := num / total][

order(rasterCell)]
initialDistr_RSS_network.vec <- initialDistr_RSS_network.dt$prior_network

Then, we create both models and assign the corresponding initial distributions.

model_network <- model
model_uniform <- model

istates(model_network) <- initialDistr_RSS_network.vec
istates(model_uniform) <- initialDistr_RSS_uniform.vec

4.4. An end to end example

We provide below an integrated script that exemplifies how to use this package to pro-
duce the location probabilities starting from the input data. To keep the size of the script
reasonable small we’ve made some simplifying assumptions: we considered that the emis-
sion probabilities are computed using the signal strength and we used uniform prior location
probabilities. There are also two functions that we used but we didn’t provide here their code:
tileEquivalence() and transform postLoc(). The first function builds a table of equiv-
alence between the numbering system used by the simulation software for tiles and the one used
by the raster package. The second one mainly transforms the dense format of the matrices
storing the location probabilities and joint location probabilities into the sparse matrix format
already described in chapter 2. The input data used by this script are provided by the simulation
software. We use the same file names as described in table 2.2.

library(data.table)
library(tidyr)
library(destim)
library(stringr)
library(Matrix)
library(xml2)

source(’transform_postLoc.R’)
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source(’tileEquivalence.R’)

# set file names
fileGridName <- ’grid.csv’
fileEventsInfoName <- ’AntennaInfo_MNO_MNO1.csv’
signalFileName <- ’SignalMeasure_MNO1.csv’
simulationFileName <- ’simulation.xml’

# read simulation params
simulation.xml <- as_list(read_xml(simulationFileName))
simulation.xml <- simulation.xml$simulation
start_time <- as.numeric(simulation.xml$start_time)
end_time <- as.numeric(simulation.xml$end_time)
time_increment <- as.numeric(simulation.xml$time_increment)
times <-

seq(from = start_time,
to = (end_time - time_increment),
by = time_increment)

sigMin <- as.numeric(simulation.xml$conn_threshold)

# read grid params
gridParam <- fread( ’grid.csv’, sep = ’,’, header = TRUE,

stringsAsFactors = FALSE)
ncol_grid <- gridParam[[’No Tiles Y’]]
nrow_grid <- gridParam[[’No Tiles X’]]
tile_sizeX <- gridParam[[’X Tile Dim’]]
tile_sizeY <- gridParam[[’Y Tile Dim’]]
ntiles <- ncol_grid * nrow_grid

# tile-rasterCell equivalence
tileEquiv.dt <- data.table(tileEquivalence(ncol_grid, nrow_grid))

# read Received Signal Strength file and compute emission probabilities
RSS <-

fread(signalFileName, sep = ",", header = TRUE, stringsAsFactors = FALSE )
setnames(RSS, c(’antennaID’, 0:(ntiles - 1)))
RSS <- melt(RSS,id.vars = ’antennaID’,variable.name = ’tile’,

variable.factor = FALSE,value.name = ’RSS’)
RSS[, RSS := ifelse(RSS < sigMin, NA, RSS)]

# compute event location (emission probabilities)
RSS <-

RSS[, eventLoc := 10 ** RSS / sum(10 ** RSS, na.rm = TRUE), by = ’tile’]
RSS <- RSS[is.na(eventLoc), eventLoc := 0]
RSS[, tile := as.numeric(tile)]
RSS <- RSS[tileEquiv.dt, on = ’tile’][, tile := NULL]
RSS <-

dcast(RSS, rasterCell ˜ antennaID, value.var = ’eventLoc’)[, rasterCell :=
NULL]

emissionProbs <- Matrix(data = as.matrix(RSS))
dimnames(emissionProbs)[[1]] <-as.character(1:dim(emissionProbs)[1])

# read and process network event data
allEvents.dt <- fread( fileEventsInfoName,sep = ’,’,stringsAsFactors = FALSE,

colClasses = c(’integer’,’character’,’character’,
’character’,’numeric’,’numeric’,’character’))
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allEvents.dt <- allEvents.dt[!duplicated(allEvents.dt)]
setnames(allEvents.dt ,
c(’time’, ’antennaID’, ’eventCode’, ’device’, ’x’, ’y’, ’tile’))
allEvents.dt[, obsVar := do.call(paste, c(.SD, sep = "-")),

.SDcols = c(’antennaID’, ’eventCode’)]
events.dt <- allEvents.dt[eventCode %in% c(’0’, ’2’, ’3’)]
events.dt_noDup <- copy(events.dt)[, list(eventCode =

as.character(min(as.numeric(eventCode)))),
by = c("time", "device")]

events.dt <- merge(events.dt_noDup, events.dt,by = names(events.dt_noDup),
all.x = TRUE)

events.dt <- events.dt[!duplicated(events.dt, by =
c("time", "device", "eventCode"))][,
.(time, device, eventCode, antennaID, obsVar)][order(time)]

# Set maximum velocity (from an external source)
vMax_ms <- 16
# Set time padding params
distMax <- vMax_ms * time_increment
pad_coef <- as.integer(ceiling(distMax / max(tile_sizeX, tile_sizeY)))
pad_coef <- pad_coef + 1

# Initial state distribution (PRIOR)

# Prepare prior_network distribution (uniform prior)
prior_network <- rep(1 / ntiles, ntiles)

# Initialize HMM
model <- HMMrectangle(nrow_grid, ncol_grid)
emissions(model) <- emissionProbs

model <- initparams(model) # initialize transition prob
model <- minparams(model) # parameter reduction according to restrictions
istates(model) <- prior_network

# compute posterior location probabilities
deviceIDs <- sort(unique(events.dt$device))

# for each device
for (i in seq(along = deviceIDs)) {

devID <- deviceIDs[i]
cat(paste0(’ device ’, devID,’...\n’))
cat(’ Selecting network events...’)
events_device.dt <- events.dt[device == devID, .(device, time, antennaID)]

[order(device, time)]

antennas_deviceID <- unlist(events_device.dt[, c("antennaID")])
if (!all(is.na(antennas_deviceID))) {
# Fit and compute HMM model
observedValues_pad <- rep(NA, pad_coef * length(antennas_deviceID))
observedValues_pad[seq(1, length(observedValues_pad), by = pad_coef)] <-

antennas_deviceID
colEvents <- sapply(observedValues_pad,function(x) ifelse(!is.na(x),

which(x == colnames(emissionProbs)), NA))

# Fit HMM - ML estimation of transition probabilities
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fitTry <- try(model_devID <- fit(model, colEvents, init = TRUE))
if (inherits(fitTry, "try-error")) {
stop("Fit model fails")

}
ssTry <- try(A <- sstates(model_devID, colEvents))
if (inherits(ssTry, "try-error")) {

stop("[compute_HMM] Smooth States fails")
}
B <- scpstates(model_devID, colEvents)

# Transform output of the HMM model to sparse matrix file format
transform_output <- transform_postLoc(

postLocP = A, postLocJointP = B,
observedValues = antennas_deviceID,
times = times,t_increment = time_increment,
ntiles = ntiles,pad_coef = pad_coef,
tileEquiv.dt = tileEquiv.dt,
devID = devID,sparse_postLocP = TRUE,
sparse_postLocJointP = TRUE)

rm(A, B)
gc()
fwrite(transform_output$postLocProb[, .(tile , time, postLocProb)],

paste0(’postLocProb_’, devID,’.csv’),col.names = FALSE,
row.names = FALSE,sep = ’,’)

transform_output$postLocJointProb[, time_to :=
time_from + time_increment]
fwrite(transform_output$postLocJointProb[, .(time_from, time_to,

tile_from, tile_to, postLocProb)],
paste0(’postLocJointProb_’, devID,’.csv’), col.names =FALSE,
row.names = FALSE,sep = ’,’)

}
}

4.5. Some remarks about computational efficiency

The package has some degree of optimization, as it uses Rcpp and RcppEigen (for sparse
linear algebra) in some critical functions and the difference in execution speed between C++
code and pure R code is well-known. We choose to use C++ for some computational intensive
operations (based on level 3 BLAS operations) like LU factorizations or QR decompositions.
For other packages in our hierarchy that also work with (sparse) matrices use the Matrix R
package because they only perform simple manipulations of rows or columns of these matrices
which run fast enough.

It can handle fairly well models with around 107 states in a desktop computer (if enough
RAM is provided). Some faster sparse linear algebra library (for example Intel MKL) might
improve a little bit the performance of such operations. Also, we are going to comment the
possibility of improve the performance using parallel computing.

4.5.1. Model construction

As has been already stated, the package is not really ready for model construction, except
for the function HMMrectangle, which are very basic models. While it is a rather fast function,
its performance can be easily improved as it is an embarrassingly parallel algorithm. This also
allows to use a cluster to generate the model.
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4.5.2. Model initialization and parametrization

The algorithm used to find an initial value for the optimizer, solves a linear system of equa-
tions at each step. While the order of the system grows with the number of transitions and
constraints, in practice, most constraints state the equality between two transition probabilities.
It is not difficult to get rid of one of the transitions and the constraint in those cases, so in practice
the process scales very well for parsimonious models.

Mostly all said for initialization also goes for parametrization, where the QR decomposition
is the slow step.

4.5.3. Forward-Backward algorithm

This amounts mostly to multiplying sparse matrices, which relies on another library (cur-
rently Eigen). Eigen is not the faster library at this moment even on a desktop computer but the
performance is not so bad. In the future Intel MKL might be a good choice, and it can also work
in distributed mode.

4.5.4. Likelihood optimization

The purpose of all the previous steps is to make easier the task of the optimizer, so it should
not be a problem if everything else is fine. Transition probabilities are required to be between
zero and one, what in general means O(n) inequality constraints. A well specified parsimonious
model, will often have a lot less constraints, as most of them are duplicated. As a reference, an
HMMrectangle(20,20) has 3364 transitions and only 5 constraints are needed in practice.

Equalities between transition probabilities would generate duplicated rows in the matrix of
inequality constraints which are eliminated before calling the optimizer.

4.5.5. Optimization algorithm

Before fitting the model there is another possibility to make faster the computation. There is
a parameter in the function fit, named init which is logical with FALSE as default. In this
case, there is an assignment of the steady state in each evaluation of the optimization. If we
assign the steady state to the initial state of the model with the function inisteady, and use
the argument init = TRUE in the fit of the model, there is just one assignment, so it is faster.
The code is as simple as follows.

model_network <- initsteady(model_network)
model_uniform <- initsteady(model_uniform)

model_devID <- fit(model_network, obs, init = TRUE)
model_devID <- fit(model_uniform, obs, init = TRUE)

The optimization algorithm to be used is set in the function fit with the argument method,
which is set by default to solnp from package Rsolnp. The other possible choice is constrOptim
from package stats.

In order to avoid giving a local minimum as solution, there is another parameter that allows
the user to execute the optimization several times. The optimizer will be launched with different
initial parameters as many times as the number in the argument retrain. The model with
higher likelihood will be returned.
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5

The deduplication layer

5.1. Introduction

In this chapter, it is shown how to deal with the duplicity problem about the unknown
fraction of mobile subscribers carrying more than one device. It also contains a brief explanation
about the intended use of the R package deduplication (Oancea et al., 2020b) and provides
a short introduction to the underlaying methodology. The goal will be to compute a device-
multiplicity probability p(n)

d for each mobile device d, i.e. the probability that a device d is carried
by an individual carrying n devices. A detailed description of the methodological approach
implemented by this package is provided by Salgado et al. (2020) and Salgado et al. (2020). To
fully understand the theory behind this package it is recommended to read the above mentioned
papers.

We start by first presenting a brief theoretical introduction of the methods used to compute
the duplicity probabilities (subsections )5.1.1, 5.1.2 and 5.1.3) and then we provide examples
on how to use deduplication package, step by step, in section 5.2. We also provide an
example that shows the easiest way of using this package, mainly by one single function call
(computeDuplicity()) in subsection 5.3.1. All the examples provided here use some input
files that come from the destim package (the location probabilities for mobile devices) and
from the simulation software (files with the networks events, the signal strength for each tile,
the boundary of each cell, the grid paramaters, general simulation parameters). These files are
provided with the deduplication package but they can be replaced by users with their own
files. The name of the files coming from the simulation software are the same as those already
presented in table 2.2.

5.1.1. Device duplicity problem

The problem of device multiplicity comes from the fact that the statistical unit of analysis
with mobile network data is the individual of a target population, not a mobile device. Since
an individual can carry more than one device with him/her, this introduces the problem of
multiple counting. For simplicity we make the simplifying assumption that each individual can
carry at most 2 devices.

The main purpose is to classify each device d in a dataset as corresponding to an individual
with only one device (1:1 correspondence between devices and individuals) or as corresponding
to an individual with two devices (2:1 correspondence between devices and individuals). This
classification will be probabilistic, thus assigning a probability p(n)

d of duplicity to each device d
carrying n = 1, 2 devices. The generalization to more devices is just a matter of computational
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complexity of this same approach.

Three methodological approaches have been developed and implemented in the deduplication
package, two approaches based on network events and another based on the distance between
centers of location probabilities which compares trajectories. Let see a brief explanation before
using the code.

5.1.2. Bayesian approaches based on network events

5.1.2.1. The one-to-one approach

We shall follow a Bayesian hypothesis testing approach. In this case, for each device d we
shall consider the disjoint set of hypotheses {Hdd′}d′=1,...,D meaning that the devices d and d′

are carried by the same individual. When d = d′ this reduces to mobile device d being the only
mobile device carried by its corresponding individual. We focus on computing

p
(1)
d = P

(
Hdd

∣∣Ed1:T , I
aux) , (5.1)

where we are using the same notation as in chapter 4. Since the entire event set Ωd for device d
can be decomposed as Ωd =

⋃D
d′=1Hdd′ , we can make use of Bayes’ theorem to write:

p
(1)
d = 1− 1

1 +
∑

d′ 6=d αdd′ · exp (`dd′ − `d)

where `d is the log-likelihood for a single device d and `dd′ for two devices d and d′ and
αdd′ = 1−P1

P1
, P1 is the a priori probability of 1:1 correspondence for all devices.

The log-likelihood `d for a single device d corresponds to the HMM model shown in the
geolocation chapter. The log-likelihood `dd′ for two devices d and d′ is computed according to
the HMM duplicity model represented where the emission probabilities are computed as the
product of the original single-device emission probabilities for d and d′.

For the specification of priors the key is the available auxiliary information Iaux. For example,
if some auxiliary information at the device level is available (for instance from the Customer
Relationship Management database) showing that devices d and any other d′ reside in far away
locations, then naturally P (Hdd′ |Iaux) ≈ 0 so that p(1)

d ≈ 1, as expected.

If we denote λ(1)
d = P(Ddd|Iaux)

1−P(Ddd|Iaux) the prior odds ratio which gives how much more probable
is that an individual carries a priori only one device d than another device together with d,
considering that apriori any other device d′ can be the second device so that P (Ddd′ |Iaux) is
constant for any other device d′ and P (Ddd|Iaux) + (ND − 1) ∗ P (Ddd′ |Iaux) = 1, where ND is the
total number of devices, we arrive at the following formula for the probability of duplicity:

p
(1)
d = 1− 1

1 + exp(−`d)
λd×(ND−1)

∑
d′ 6=d exp (`dd′)

.

Thus, depending on the available information, if there is information at the device level that
can be used to evaluate λd, the latter formula can be used to compute the duplicity probability,
otherwise, the former formula with a single value of α for all devices is used. More detailed
about this approach is provided by Salgado et al. (2020).
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5.1.2.2. The pair approach

This approach is explained in detail in Salgado et al. (2020). Here there are some notes to
understand what is computing. Denoting by Ddd′ the event which has the meaning “devices d
and d′ are carried by the same individual” and by Dc

dd′ the event with the meaning “devices d
and d′ are not carried by the same individual” the duplicity probability for device d is the pair
duplicity probability pdd′ ≡ P(Ddd′ |E, Iaux) corresponding to device d′ more similar to d and we
can write p(2)

d = maxd′ 6=d P (Ddd′ |E, Iaux). Obviously, pdd′ = 0 for all d = d′.

We compute the pair-duplicity probabilities pdd′ for two devices d and d′ using the Bayes
theorem:

P (Dc
dd′ |E, Iaux) =

P
(
E|Dc

dd′ , I
aux)P (Dc

dd′ |Iaux)
P (E|Ddd′ , Iaux)P (Ddd′ |Iaux) + P

(
E|Dc

dd′I
aux
)
P
(
Dc
dd′ |Iaux

) =
1

1 +
P(Ddd′ |Iaux)

P(Dc
dd′ |I

aux)
× P(E|Ddd′ ,Iaux)

P(E|Dc
dd′ ,I

aux)

Here P (Ddd′ |Iaux) and P
(
Dc
dd′ |Iaux) are the prior probabilities for the duplicity and non-

duplicity events and P (E|Ddd′ , I
aux) and P

(
E|Dc

dd′ , I
aux) stands for the likelihoods under each

hypothesis Ddd′ and Dc
dd′ , respectively.

After some mathematical manipulations we arrive at the following formula:

p
(2)
d = max

d 6=d′

(
1

(1 + α ∗ exp (`dd′ − `d − `d′))

)
,

where α = P2
P1

, P1 is the a priori probability of duplicity for a device and P2 = 1− P1.

5.1.3. The trajectory approach

This approach also follows a Bayesian philosophy, but instead of using network event
variables E we will use properties of the trajectories derived from the HMMs, i.e. the location
probability distributions {γdt} of all devices d.

Applying the Bayes theorem again we have:

P (Dc
dd′ |X, Iaux) =

1

1 +
P(Ddd′ |Iaux)

P(Dc
dd′ |I

aux)
× P(X|Ddd′ ,Iaux)

P(X|Dc
dd′ ,I

aux)

,

where X is a variable related to the estimated trajectories in terms of posterior location probabil-
ities.

To apply this idea we compute the probability distribution of the signed distance be-
tween the x- and y-axis position of each pair of devices (we denote these random variables by
∆x,dd′t = Xdt − Xd′t and ∆y,dd′t = Ydt − Yd′t) and count how many times the mode of these
distributions are less than a predefined quantity (ξ ×max (rdt, rd′t). If a device d corresponds to
an individual with two devices (2:1), there will be another device d′ such that their distance will
be significatively close to 0 along their trajectories.

We define:

p̂mode
dd′ ≡ P (X|Ddd′ , I

aux) =
#{t = 1, . . . , T : |δ∗xt| ≤ ξ ·max{rddt, rdd′t}, |δ∗yt| ≤ ξ ·max{rddt, rdd′t}}

T
,

(5.2)
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where δ∗xt and δ∗yt are the mode of the ∆x,dd′t and ∆y,dd′t variables. The duplicity probability will
be given by:

p
(2)
d = max

d6=d′

1− 1

1 + α× p̂mode
dd′

1−p̂mode
dd′


where α = P1

1−P1
, P1 being the a priori probability of duplicity.

5.2. Syntax step by step

This section explains briefly the main functions of the package and how to use each method
of computing the duplicity probability implemented in the deduplication package. In all the
examples below we will use the data set included in this package. This data set was generated
using the simulation software. The first step will be to set the path to the data:

library(deduplication)
path_root <- ’extdata’

Then, some information which is needed whatever the duplicity method is computed. Read
the information about the territory, data from the simulation: general parameters, antennas
information and events. Let us see the input parameters:

gridParams <-readGridParams(system.file(path_root, ’grid.csv’,
package = ’deduplication’))

gridParams is a list that contains the number of rows and columns of the grid and the tile
dimensions along OX and OY axes.

Since we will work with simulated data in our example, we need some parameters that were
used to generate the data set: the probability of a person to have two mobile devices (needed
for the a priori duplicity probability) and the minimum value of the signal strength/quality to
allow a connection between a mobile device and an antenna. These two values are read from
the simulation.xml file:

simParams <-readSimulationParams(system.file(path_root, ’simulation.xml’,
package = ’deduplication’))

We also need to read the network events:

events <- readEvents(system.file(path_root, ’AntennaInfo_MNO_MNO1.csv’,
package = ’deduplication’))

From the events table we can easily build a list of devices present in the current data set
and a table with the antenna IDs where these devices are connected for every time instant:

devices <- getDeviceIDs(events)
connections <- getConnections(events)
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devices is a (sorted) list of the IDs of all devices detected by the network and connections
is a matrix with each row corresponding to a device and the elements on the columns corre-
sponding to the IDs of the antenna where the device is connected at a every time instant.

The next step will be the computation of the emission probabilities for the individual HMM
models (for each device) and for the joint models (for pairs of devices). Since the emission
probabilities are computed for each tile in the grid we need the number of rows and columns of
the grid and also the file with the signal strength/quality. We also need the minimum value of
the signal strength/quality that allows a connection between a mobile device and an antenna
and we will use it to set to 0 the signal strength/quality for each tile where the actual value is
below this threshold.

sgFileName <- system.file(path_root, ’SignalMeasure_MNO1.csv’,
package = ’deduplication’)

emissionProbs <- getEmissionProbs(nrows = gridParams$nrow,
ncols = gridParams$ncol,
signalFileName = sgFileName,
sigMin = simParams$conn_threshold)

jointEmissionProbs <- getEmissionProbsJointModel(emissionProbs)

Using the emission probablities we can build the generic HMM model (for each individual
device) and the joint HMM model (for pairs of devices):

model <- getGenericModel(nrows = gridParams$nrow,
ncols = gridParams$ncol,
emissionProbs = emissionProbs)

modelJ <- getJointModel(nrows = gridParams$nrow,
ncols = gridParams$ncol,
jointEmissionProbs = jointEmissionProbs)

We can fit now the individual models:

ll <- fitModels(length(devices), model, connections)

fitModels calls the fit function from destim package to do this task. Being a time
consuming operation, it builds a cluster of working nodes and spreads the computations for
subsets of devices to these nodes. The number of working nodes equals the number of logical
cores of the computer. On Windows the cluster is a SOCK one while on Unix-like operating
systems (Linux and MacOS) it is a FORK cluster, taking advantage of its higher speed.

Now, let us see the computation of each method.

5.2.1. The Bayesian approach with network events - the one-to-one method

This method needs a complete list of pairs of devices and it also uses as an input parameter
the apriori probability for one-to-one correspondence between devices and owners.

Now, we compute the a priori probability for one-to-one correspondence and build the pairs
of devices:
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Pii <- aprioriOneDeviceProb(prob2Devices = simParams$prob_sec_mobile_phone,
ndevices = length(devices))

pairs4dup <- computePairs(connections = connections,
ndevices = length(devices),
oneToOne = TRUE)

Finally, we call the computeDuplicityBayesian function by using the one-to-one method:
method = "1to1".

probDup1 <- computeDuplicityBayesian(method = "1to1",
deviceIDs = devices,
pairs4dupl = pairs4dup,
modeljoin = modelJ,
llik = ll,
P1 = NULL,
Pii = Pii)

probDup1[]
#> deviceID dupP
#> 1: 73 0.00000000
#> 2: 78 1.00000000
#> 3: 79 1.00000000
#> 4: 83 0.07203531
#> 5: 85 0.00000000
#> ---
#> 214: 776 1.00000000
#> 215: 777 1.00000000
#> 216: 779 0.00000000
#> 217: 782 0.00000000
#> 218: 787 0.00000000

probDup1 is a data.table where in the first column we have the deviceID and in the second
column we have the corresponding duplicity probability.

If we have the value of the lambda parameter for each device (or a single value for all
devices) we can call the same function but instead of providing the a priori probability for
one-to-one correspondence, we can provide the value of lambda (the value given here is only
for convenience):

probDup2 <- computeDuplicityBayesian("1to1", devices, pairs4dup,
modelJ, ll, P1 = NULL, Pii = NULL,
init = TRUE, lambda = 0.67)

5.2.2. The Bayesian approach with network events - the pairs method

The pairs method needs to receive a list of pairs of devices and the corresponding antennas
where they are connected at every time instant. This list depends on the number of devices and
could be very large which means a long execution time. To shorten the execution time we can
exclude from the list of pairs the devices that are impossible to belong to the same person. For
this, we first build a list of neighbouring antennas, considering that two antennas are neighbours
if their coverage areas (cells) have a non void intersection. Then, this list will be used to retain
only those devices connected to neighboring antennas most of the time.
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coverarea <- readCells(system.file(path_root, ’AntennaCells_MNO1.csv’,
package = ’deduplication’))

antennaNeigh <- antennaNeighbours(coverarea)

The a priori probability of duplicity is simply given by:

P1 <- aprioriDuplicityProb(prob2Devices = simParams$prob_sec_mobile_phone,
ndevices = length(devices))

We can build now the pairs of devices needed to compute the duplicity probabilities:

pairs4dup <- computePairs(connections = connections,
ndevices = length(devices),
oneToOne = FALSE,
P1 = P1,
limit = 0.05,
antennaNeighbors = antennaNeigh)

Note that we set oneToOne = FALSE to build the reduced list of pairs of devices that takes
into consideration the exclusion criterion mentioned above.

The duplicity probability for each devices is now computed as:

probDup3 <- computeDuplicityBayesian(method = "pairs",
deviceIDs = devices,
pairs4dupl = pairs4dup,
modeljoin = modelJ,
llik = ll,
P1 = P1)

probDup3 is a data.table where in the first column we have the deviceID and in the second
column we have the corresponding duplicity probability.

5.2.3. The trajectory approach

The trajectory method needs a path to the files with the posterior location probabilities. These
files should have the following name convention: postLocDevice + deviceID + .csv. The
files with the posterior location probabilities are obtained with the destim package. We provide
all the files needed to run this example.

Below is the sequence of instructions to compute the duplicity probabilities using the
trajectory method. As we have done in the previous methods, there is some information from
the simulation but in this case it is needed to read the network events file only to obtain the list
of devices and sequence of time instants. If they are available separately they can be provided
without the need of the events file. To shorten the execution time we have made use of the same
technique to reduce the number of the pairs of devices as in the case of the pairs method.

ntimes <- nrow(unique(events[,1]))

P1a <- aprioriDuplicityProb(prob2Devices = simParams$prob_sec_mobile_phone,
ndevices = length(devices))
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pairs4dup <- computePairs(connections = connections,
ndevices = length(devices),
oneToOne = FALSE,
antennaNeighbors = antennaNeigh)

probDup4 <- computeDuplicityTrajectory(path = path_root,
devices = devices,
gridParams = gridParams,
pairs = pairs4dup,
P1 = P1a,
T = ntimes,
gamma = 0.5)

The computeDuplicityTrajectory function uses a cluster of working nodes to paral-
lelize the computations. As in the Bayesian approach, the number of nodes equals the number
of logical cores. The structure of the result is the same as in the previous examples: a table
where we have the device IDs on the first column and the corresponding duplicity probability
on the second column. The value of the argument gamma is the value of ξ explained before (see
equation˜5.2).

5.3. Some remarks

5.3.1. Basic use in the easy way

As one can notice, arriving at the final duplicity probability table involves several in-
termediate steps. In order to hide all these details from the user we provide the function
computeDuplicity that is easier to use. Below we show a full example with all the method
computed by using this function.

Firstly, we set the folder where the necessary input files are stored:

path_root <- ’extdata’

Next, we set the grid file name, i.e. the file where the grid parameters are found:

gridfile <- system.file(path_root, ’grid.csv’, package = ’deduplication’)

Then we set the events file name, i.e. the file with network events registered during a
simulation:

eventsfile <- system.file(path_root, ’AntennaInfo_MNO_MNO1.csv’,
package = ’deduplication’)

We also need to set the signal file name, i.e. the file where the signal strength/quality for
each tile in the grid is stored:

signalfile <- system.file(path_root, ’SignalMeasure_MNO1.csv’,
package = ’deduplication’)

The antenna cells file is needed to build the list of neighboring antennas. This file is needed
only if the duplicity probabilities are computed using pairs or trajectory methods:
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antennacellsfile <- system.file(path_root, ’AntennaCells_MNO1.csv’,
package = ’deduplication’)

Finally, we set the simulation file name, i.e. the file with the simulation parameters used to
produce the data set:

simulationfile <- system.file(path_root, ’simulation.xml’,
package = ’deduplication’)

Now we can compute the duplicity probabilities using one of the three methods:

1. Using the 1to1 method:

out1 <- computeDuplicity(method = "1to1",
gridFileName = gridfile,
eventsFileName = eventsfile,
signalFileName = signalfile,
simulatedData = TRUE,
simulationFileName = simulationfile)

Using the 1to1 method with lambda parameter (note that the value given here is for
convenience):

out1p <- computeDuplicity(method = "1to1",
gridFileName = gridfile,
eventsFileName = eventsfile,
signalFileName = signalfile,
simulatedData = TRUE,
simulationFileName = simulationfile,
lambda = 0.67)

2. Using the pairs method:

out2 <- computeDuplicity(metho = "pairs",
gridFileName = gridfile,
eventsFileName = eventsfile,
signalFileName = signalfile,
antennaCellsFileName = antennacellsfile,
simulationFileName = simulationfile)

3. Using the trajectory method:

out3 <- computeDuplicity(method = "trajectory",
gridFileName = gridfile,
eventsFileName = eventsfile,
signalFileName = signalfile,
antennaCellsFileName = antennacellsfile,
simulationFileName = simulationfile,
path= path_root)
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5.3.2. A note on building the HMM models

The HMM models (both individual ones and the joint models) are built storing the steady
state as fixed initialization by default. This is achieved by setting the default value of the
initSteady parameter : initSteady = TRUE. If a user wants to use some specific a priori
probabilities this can be done as in the following sequence:

aprioriProbModel <- matrix (1 / (gridParams$nrow * gridParams$ncol),
nrow = gridParams$nrow, ncol = gridParams$ncol)

model <- getGenericModel(nrows = gridParams$nrow,
ncols = gridParams$ncol,
emissionProbs = emissionProbs,
initSteady = FALSE,
aprioriProb = aprioriProbModel)

modelJ <- getJointModel(nrows = gridParams$nrow,
ncols = gridParams$ncol,
jointEmissionProbs = jointEmissionProbs,
initSteady = FALSE,
aprioriJointProb = aprioriProbModel)

5.3.3. Notes about computational efficiency

The most computational intensive functions of the package (computeDuplicity, comp-
uteDuplicityBayesian and computeDuplicityTrajectory) use parallel computations
to decrease the execution time. Parallelization is done using the standard techniques found in
the parallel package: first the above mentioned functions build a cluster of working nodes,
exports the variables needed for computations to all nodes and then distribute the computations
equally among these nodes. While executing the parallel code, all the logical cores of the
computer are used. Even using these parallel computations techniques, the execution time
could be high, depending on the size of the input data. The most demanding method from the
execution time point of view is the trajectory method.
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6.1. Introduction

In this chapter, we illustrate the aggregation process through the corresponding implementa-
tion in the R package aggregation (Oancea et al., 2020a). The main purpose is to present some
technical details of its implementation and provide examples on how to use this package. Some
basic knowledge about destim and deduplication packages would be useful to understand
how this package works (see previous chapters). A detailed description of the methodological
approach implemented by this package is provided by Salgado et al. (2020) and Salgado et al.
(2020).

The aggregation process connects the number of devices detected by the network with the
number of individuals in the network (the whole territory or a partition). There are two main
goals in this process:

1. The number of detected individuals.
2. The origin - destination matrix.

Let us see a brief description of the underlaying methodology and the steps to solve them
with the implementation done in the aggregation package.

We are under the assumption that the goal is the whole population, so there is no need of
statistical filtering before computing the aggregation process. In case that the target population
would be a subset such as: domestic tourists, inbound tourists, commuters, etc., a process of
statistical filtering must be applied before doing the aggregation. The main idea would be
to identify groups of devices through their patterns of movement. We have identify several
indicators and propose some possible methods (see Salgado et al., 2020). However, we have not
developed a specific methodology for that process since in our simulated data there is currently
no pattern apart from random walks (with or without drift). In fact, in the following sections
the example is shown through the same simulation of previous chapters.

The rest of the chapter is organized as follows. Section 6.2 presents the method of computing
the number of detected individuals. It starts with a brief introduction into the methodological
approach (subsection 6.2.1) and continues with an example of using the aggregation package
to compute this number (subsection 6.2.2 ) where it presents the function rNentEvent(). This
function generates random variates according to a Poisson multinomial distribution which can
be used to compute a point estimation (mean, mode) of the number of individuals. Section 6.3
is dedicated to the origin-destination matrix. Again, we start with a short introduction of the
methodological approach and then we present an example of using function rNnetEventOD()
to compute the origin-destination matrix in subsection 6.3.1.
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6.2. The number of detected individuals

6.2.1. Brief methodological description

The main objective of the aggregation is to estimate the number of detected individuals
starting from the number of detecting devices and making use of the duplicity probability for
each device.

For this purpose, it uses a probabilistic approach in order to carry forward the uncertainty
already present in the preceding stages all along the end-to-end process. The geolocation of
network events is conducted with certain degree of uncertainty (due to the nature itself of
the process – see chapter 4) and the duplicity of a given device (carried by an individual with
another device) is also probabilistic in nature (see chapter 5), therefore, a priori it is impossible
to provide a certain number of individuals in a given territorial unit.

For this reason the methodology behind this process focuses on the probability distribu-
tion of the number of individuals detected by the network. Having a probability distribution
amounts to having all statistical information about the random phenomenon and one can choose
any point estimation (mean, median, mode) together with uncertainty measures (coefficient of
variation, credible intervals).

The aggregation procedure is strongly based on the results of preceding modules (geoloca-
tion and duplicity) avoiding any extra hypothesis.

We define the vectors e(1)
i = ei and e

(2)
i = 1

2ei, where ei is the canonical unit vector in RNT
(with NT the number of tiles in the reference grid).

Next, we define the random variable Tdt ∈ {e(1)
i , e

(2)
i }i=1,...,NT with probability mass function

P (Tdt|E1:D) given by

P
(
Tdt = e

(1)
i |E1:D

)
= γdti × (1− p(2)

d )

P
(
Tdt = e

(2)
i |E1:D

)
= γdti × p(2)

d ,

where p(2)
d is the device duplicity probability computed with deduplication package (named

as p(2)
d in chapter 5) and γdti denote the location probability of device d at time t and tile i com-

puted with destim package. It can be easily observed that this is a categorical or multinoulli
random variable.

Finally, we define the multivariate random variable Nnet
t providing the number of individuals

Nnet
ti detected by the network at each tile i = 1, . . . , NT at time instant t:

Nnet
t =

D∑
d=1

Tdt.

The random variable N
(net)
t is a Poisson multinomial distributed random variable. The prop-

erties and software implementation of this distribution are not trivial and we use a Monte Carlo
simulation method by convolution to generate random variates according to this distribution.

Another interesting issue is to consider the computation of the distribution of the number of
detected individuals at a region/zone level. Let us consider a combination of tiles that we can
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called regions. We shall denote them as T̄r =
⋃
i∈Ir Ti, where Ir denotes the set of tile indices

composing region r. If the independence assumption still holds (because the size of the region
is still small enough), then we can reproduce the whole derivation above just by defining the
location probability γ̄dtr at region r as

γ̄dtr =
∑
i∈Ir

γdti. (6.1)

The subsequent elaboration to build the final Poisson-multinomial-distributed number of
detected individuals is completely similar. Notice again that there exists a limitation in the sum
of device-level distributions put by the size of the underlying region breakdown. The random
vector N̄net

t of individuals per region in terms of the deduplicated location T̄dt per region would
be also expressed as a sum:

N̄net
t =

D∑
d=1

T̄dt. (6.2)

Notice that this decomposition allows us to write straightforwardly the mean vector and
the covariance matrix for N̄net

t . Define the deduplicated location probabilities per region as

γ̄
dedup
dtr ≡ (1− p

(2)
d
2 ) · γ̄dtr for all regions r = 1, . . . , R. Then

E
[
N̄net
t

]
=

D∑
d=1

R∑
r=1

γ̄
dedup
dtr er, (6.3)

V
[
N̄net
t

]
=

D∑
d=1

R∑
r=1

γ̄
dedup
dtr · (1− γ̄dedup

dtr )Err. (6.4)

In the following, we show how to obtain in practice all these concepts.

6.2.2. The rNnetEvent()

The aggregation package provides a single function to generate random variates ac-
cording to the Poisson multinomial distribution: rNnetEvent(). Thus, all the details about
intermediate computations are hidden from the users. The input data needed by this function
are:

n: the number of the random values to be generated,
dupFileName: the file with the duplicity probabilities for each device,
regsFileName: the file defining the geographical regions where we intend to aggregate
the number of individuals,
postLocPath: the path to the directory where the files with the posterior location proba-
bilities for each device are found,
prefix: the name prefix of these files (which are the output of the destim package),
times: a vector with the values of time instants.

There is also an optional argument called seed, the seed needed to initialize the random
number generator. In the example below we use the default value of this argument.

We provide a complete set of files with example data in the extdata folder of this package.
The raw data used to produce these files are given by our simulation software. If the user wants
to work with real data reading of the simulation.xml (see code below) will be skipped, and
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instead a vector with all the time instants when the network events were registered should be
build and provided.

The duplicity file is a simple .csv file which is the main result of the deduplication pack-
age. It is a simple table with two columns, namely deviceID and duplicityProbability:

dupProb <- read.csv(file = system.file(’extdata/duplicity.csv’,
package = ’aggregation’))

head(dupProb)
#> deviceID dupP
#> 1 73 0.00000000
#> 2 78 1.00000000
#> 3 79 1.00000000
#> 4 83 0.05141439
#> 5 85 0.00000000
#> 6 90 0.06842542

The regions file is also a simple .csv file defined by the user. It contains two columns: the tile
number and the region number. Normally, all tiles in the grid should be part of a region.

regions <- read.csv(file = system.file(’extdata/regions.csv’,
package = ’aggregation’))

head(regions)
#> tile region
#> 1 1560 3
#> 2 1561 3
#> 3 1562 3
#> 4 1563 3
#> 5 1564 3
#> 6 1565 3

The third parameter that should be passed to this function is the path where the files with
the posterior location probabilities are found. There should be one file for each device in the
whole set of devices. A file contains a table with the posterior location probabilities for a device.
It has three columns: tile, time, probL. It contains only the entries corresponding to nonzero
values of the posterior location probability (probL column). The file extension is .csv.

Below we show a simple example of how to use this function and its result.

# set the folder where the necessary input files are stored
path <- ’extdata’

prefix = ’postLocDevice’

# get the series of time instants from the simulation.xml file.
simParamsFileName <- system.file(path, ’simulation.xml’,

package = ’aggregation’)
simParams <- deduplication::readSimulationParams(simParamsFileName)
time_from <- simParams$start_time
time_to <- simParams$end_time
time_incr <- simParams$time_increment
times <- seq(from = time_from, to = time_to-time_incr, by = time_incr)
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# set the duplicity probabilities file name,
#i.e. the file with duplicity probability for each device
dpFile <- system.file(path, ’duplicity.csv’, package = ’aggregation’)

# set the regions file name, i.e. the file defining the regions for which
# we need the estimation of the number of individuals detected by network.
rgFile <- system.file(path, ’regions.csv’, package = ’aggregation’)

# set the path to the posterior location probabilities files
pathLoc <- system.file(path, package = ’aggregation’)

# set the number of random values to be generated
n <- 1e3

# call rNnetEvent
nNet <- rNnetEvent(n = n,

dupFileName = dpFile,
regsFileName = rgFile,
postLocPath = pathLoc,
prefix = prefix,
times = times)

head(nNet)

time region N iter
1: 1 1 11 1
2: 1 1 11 2
3: 1 1 10 3
4: 1 1 13 4
5: 1 1 10 5
6: 1 1 12 6

The result nNet is a data.table object with 4 columns: time, region, N, iter. For each distinct
combination of time-region this table contains n randomly generated values. The last column,
iter, contains the index of the random value (given in column N) generated for each time, instant
and region.

One can use the mean, mode or median to obtain an estimation of the number of individuals
at each time instants in each region. Below is an example of how to do this.

# print the mean number of detected individuals
# for each region, for each time instant
regions <- as.numeric(unique(nNet$region))
times <- unique(nNet$time)

for(r in regions) {

print(paste0("region: ", r))
for(t in times) {

print(paste0("time instant: ", t,
" number of individuals: " ,
round(mean(nNet[region == r][time ==t]$N))))
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}
}

6.3. The origin destination matrix

6.3.1. Brief methodological description

The construction of the probability distribution for the number of individuals N̄net
t detected

by the network can be easily generalized to the number of individuals N̄net
t,·· detected by the

network moving between territorial units. We begin by defining matrices E(1)
rs = Ers and

E
(2)
rs = 1

2Ers, where Ers are the Weyl matrices of dimension R×R. Next, we define the matrix
random variable Edt ∈ {E(1)

rs , E
(2)
rs }r,s=1...,R with probability mass function given by

P
(
Edt = E(1)

rs

)
= γ̃dt,sr · p(1)

d , (6.5a)

P
(
Edt = E(2)

rs

)
= γ̃dt,sr · p(2)

d , (6.5b)

where γdt,sr stands for the joint location probabilities computed in the geolocation module
aggregated to the regions r, s = 1, . . . , R. Notice that, although matrix-valued, this is still a
categorical or multinoulli random variable. Then, we can define the origin-destination matrix
between regions of individuals detected by the network by

N̄net
t =

D∑
d=1

Edt, (6.6)

which, as before, distributes according to a multinomial-Poisson distribution. Again, we shall use
Monte Carlo techniques to deal with it. If we define the deduplicated joint location probabilities

γ̃
dedup
dt,sr =

(
1− p

(2)
d
2

)
· γ̃dt,sr, then the mean origin-destination matrix is given by

E
[
N̄net
t

]
=

D∑
d=1

R∑
r,s=1

γ̃
dedup
dt,sr Ers. (6.7)

Once we have posterior distributions we can also compute credible intervals for each region
and each time instant.

6.3.2. The rNnetEventOD() function

Again, the aggregation package provides a single function to generate random variates
that can be used then to compute an estimation of the number of individuals moving from one
region to another. The parameters of this function are:

n: the number of the random values to be generated,
dupFileName: the file with the duplicity probabilities for each device,
regsFileName: the file defining the geographical regions where we intend to aggregate
the number of individuals,
postLocJointPath: the path to the directory where the files with the posterior joint
location probabilities for each device are found,
prefix: the name prefix of these files.
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There is also an optional argument, seed, the seed needed to initialize the random number
generator. In the example below we use the default value of this argument.

The files containing the joint probabilities are also a result of the destim package. We
provide a complete set of files with example data in the extdata folder of this package. The
raw data used to produce these files are given by our simulation software.

# For the origin-destination matrix we proceed as follows
# set the folder where the necessary input files are stored
path <- ’extdata’

postLocJointPath <- system.file(path, package = ’aggregation’)
prefixJ <- ’postLocJointProbDevice’

# set the duplicity probabilities file name,
# i.e. the file with duplicity probability for each device
dpFile <- system.file(path, ’duplicity.csv’, package = ’aggregation’)

# set the regions file name, i.e. the file defining the regions for which
# we need the estimation of the number of individuals detected by network.
rgFile <- system.file(path, ’regions.csv’, package = ’aggregation’)

# generate n random values
n <- 1e3

nnetOD <- rNnetEventOD(n = n,
dupFileName = dpFile,
regsFileName = rgFile,
postLocJointPath = postLocJointPath,
prefix = prefixJ)

head(nnetOD)

time_from time_to region_from region_to Nnet iter
1: 0 10 1 1 18.0 1
2: 0 10 1 1 18.5 2
3: 0 10 1 1 19.0 3
4: 0 10 1 1 18.0 4
5: 0 10 1 1 19.0 5
6: 0 10 1 1 18.0 6

For each pair(time from-time to, region from-region to) there are n random values in the
last but one column. One can use again the mean, mode or median to have an estimate of the
number of individuals moving from one region to another at a certain time.

The following code shows how to compute the the origin-destination matrix for the time
interval (0,10).

t_from <-0
t_to <- 10

regions_from <- sort(as.numeric(unique(nnetOD$region_from)))
regions_to <- sort(as.numeric(unique(nnetOD$region_to)))
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ODmat <- matrix(nrow = length(regions_from), ncol = length(regions_to))
for(r1 in regions_from) {

for(r2 in regions_to) {

aux <- nnetOD[time_from == t1][time_to == t2][
region_from == r1][region_to == r2]$Nnet

ODmat[r1,r2] <- round(mean(aux))

}

}
ODmat

6.4. Some remarks about computational efficiency

The most computational intensive functions of the package (rNnetEvent, rNnetEventOD)
use parallel computations to decrease the execution time. Parallelization is done using the
standard techniques found in the parallel package: firstly, the above mentioned functions
build a cluster of working nodes, exports the variables needed for computations to all nodes
and then distribute the computations equally among these nodes. While executing the parallel
code, all the logical cores of the computer are used. Even using these parallel computations
techniques, the execution time could be high, depending on the size of the input data. The
cluster used for parallel computations is a SOCK one under the Windows operating system and
a FORK one under Unix-like operating systems.
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7.1. Introduction

In this chapter, the process on the inference layer is illustrated. The inference process con-
nects the number of individuals in the network with the number of individual in the target
population. The main goal is the computation of the probability distribution for the number of
individuals in the target population conditioned on the number of individuals detected by the
network and some auxiliary information which is absolutely necessary to provide a meaningful
inference on the target population. The auxiliary information is provided by the penetration
rates (ratio of number of devices to number of individuals in the target population) P net

r of the
MNO and the register-based population N reg

r at each region r.

We propose a two-staged modelling exercise. Firstly, we assume that there exists an initial
time instant t0 in which both the register-based target population and the actual population
can be assimilated in terms of their physical location. We can assume, e.g., that at 6:00am
all devices stay physically at the residential homes declared in the population register. This
assumption will trigger the first stage in which we compute a probability distribution for the
number of individuals Nt0 of the target population in all regions in terms of the number of
individuals Nnet

0 detected by the network and the auxiliary information. Secondly, we proceed
with the dynamical part for what we assume that individuals displace over the geographical
territory independently of the MNO, i.e. subscribers of MNO 1 will show a displacement pattern
similar to those of MNO 2. This assumption will trigger the second stage in which we provide a
probability distribution for the number of individuals Nt for later times t > t0.

Regarding the origin-destination matrix, we can use the same assumptions to infer the
number of individuals moving from one region to another at time instant t, also providing
credible intervals as an accuracy indicator.

A detailed description of the methodological approach implemented is provided by Salgado
et al. (2020) and Salgado et al. (2020).

This chapter is divided in three main parts:

Population at the initial time t0.
The dynamical approach: population at t > t0.
Origin-destination matrices.

Inside each section, we show a brief methodological description that can be extended with
the material by Salgado et al. (2020) and Salgado et al. (2020) and the implementation step by
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step that has been done in the R package inference (Oancea et al., 2020c). Thus, in section 7.2
we treated the problem of estimating the population count at t0. We started by presenting a short
methodological overwiew (subsection 7.2.1) and then we presented a detailed example on using
the function that performs this estimation computeInitialPopulation() in subsection
7.2.2. In section 7.3, we presented the estimation of the population count at successive time
instants t > t0 in the same way: a short introduction to the methodological background is
given in subsection 7.3.1 and an example on how to use computePopultionT() function is
given in subsection 7.3.2. The origin-destination matrix estimation is presented in section7.4
with a outline of the method used in subsection 7.4.1 and details on how to estimate this
matrix with computePopulationOD() function in subsection 7.4.2. This chapter ends with
the presentation of an add-on functionality of it, namely a REST AP, in section 7.5.

7.2. Population at the initial time t0

7.2.1. Brief methodological description

In this section we focus on the present population at the initial time t0. Then, for ease of
notation we shall drop the time index. We shall combine the number of individuals in the
network per region, Nnet

r , the penetration rates per region, Pr, and the register-based population
per region N reg

r to produce the probability distribution for N = (N1, . . . , NR)T for all R regions.

We follow the approach used in the species abundance problem in Ecology by Royle and Do-
razio (2009). This approach clearly distinguishes between the state and the observation process.
The state process is the underlying dynamical process of the population and the observation
process is the procedure by which we get information about the location and timestamp of
each individual in the target population. The different available auxiliary information will be
integrated using different levels in the hierarchy of the statistical model.

7.2.1.1. Observation process

The first level makes use of the detection probability pr of individuals of a network in each
region r. We shall concentrate first on the observation process. We model

Nnet
r ' Binomial (Nr, pr) . (7.1)

This model makes the only assumption that the probability of detection pr for all individuals
in region r is the same. We approximate it using the penetration rate Pr of the MNO in region r.
The posterior probability distribution for Nr in terms of Nnet

r will be given by

P
(
Nr|Nnet

r

)
=

{
0 if Nr < Nnet

r ,
negbin

(
Nr −Nnet

r ; 1− pr, Nnet
r + 1

)
if Nr ≥ Nnet

r ,

where negbin denotes the probability mass function of a negative binomial random variable.
Once we have a distribution, we can provide a point estimators, a posterior variance, a posterior
coefficient of variation, a credible interval, and as many indicators as possible computed from
the distribution. In our implementation we compute the mean, mode and median as point
estimators, the standard deviation, coefficient of variation the first and third quartile, the in-
terquartile range and the credible intervals.

We introduce now the second level and model the detection probability pkr per individual
k in the target population as pkr = pr + noise. We propose to implement this idea modeling
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pr ' Beta (αr, βr) and choosing the hyperparameters αr and βr according to the penetration
rates P net

r and the register-based population figures N reg
r . The penetration rate is also subjected

to the problem of device deduplication. We define:

Ω(1)
r =

∑D
d=1 γ̄dr · p

(1)
d∑D

d=1 γ̄dr
, (7.2)

Ω(2)
r =

∑D
d=1 γ̄dr · p

(2)
d∑D

d=1 γ̄dr
, (7.3)

with p(i)
d being the duplicity probabilities (computed in chapter 6 under the same assumptions

about at most two devices per individual) and γ̄dr the posterior location probabilities in region r
for device d. The deduplicated penetration rate is defined as:

P̃ net
r =

(
Ω(1)
r +

Ω
(2)
r

2

)
· P net

r . (7.4)

Let us make the following assumptions:

On average, we assume that detection takes place with probability P̃ net
r .

Detection is undertaken over the register-based population. We assume some coherence
between the official population count and the network population count.

The penetration rates P net
r and the official population counts N reg

r come without error.
Should this not be attainable or realistic, we would need to introduce a new hierarchy
level to account for this uncertainty (see below).

The deduplicated penetration rates are computed as a deterministic procedure (using
a mean point estimation), i.e. the deduplicated penetration rates are also subjected to
uncertainty, thus we should also introduce another hierarchy level to account for this
uncertainty.

Then, we fix the following: αr + βr = N
reg
r , αr

αr+βr
= P̃ net

r , which immediately implies that

αr = P̃ net
r ·N reg

r , (7.5a)

βr =
(

1− P̃ net
r

)
·N reg

r . (7.5b)

Now, we can readily compute the posterior distribution for Nr:

P
(
Nr|Nnet

r

)
=

{
0 if Nr < Nnet

r ,
betaNegBin

(
Nr −Nnet

r ;Nnet
r + 1, αr − 1, βr

)
if Nr ≥ Nnet

r .

(7.6)

It is a displaced beta negative binomial distribution. Again, we can provide point estimates
as well as posterior variances, credible intervals, etc.

Notice that when αr, βr � 1 (i.e., when min(P̃ net
r , 1 − P̃ net

r ) · N reg
r � 1) the beta negative

binomial distribution (7.6) reduces to the negative binomial distribution
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P
(
Nr|Nnet

r

)
=

{
0 if Nr < Nnet

r ,

negbin
(
Nr −Nnet

r ; βr
αr+βr−1 , N

net
r + 1

)
if Nr ≥ Nnet

r .

Note also that βr
αr+βr−1 ≈ 1 − P̃ net

r so that in this case we do not need the register-based
population (this is similar to dropping out the finite population correction factor in sampling
theory for large populations).

So far, the inference has been conducted independently in each region r. We can introduce
another layer in the hierarchy by modelling also the hyperparameters (αr, βr) so that the
relationship between these parameters and the external data sources (penetration rates and
register-based population counts) is also uncertain.

7.2.1.2. State process

Finally, we can also introduce the state process. The system is a human population and we
can make a common modelling hypothesis to represent the number of individuals Nr in region
r of the target population as a Poisson-distributed random variable in terms of the population
density, i.e.

Nr ' Poisson (Arσr) , (7.7)

where σr stands for the population density of region r and Ar denotes the area of region r. We
choose to model Nr in terms of the population density to make an auxiliary usage of some
results already found in the literature (see e.g. Deville et al., 2014).

Similarly to the observation process, we introduce the following hierarchy:

Nnet
r ' Bin (Nr, pr) , for all r = 1, . . . , R, (7.8a)
Nr ' Poisson (Arσr) , for all r = 1, . . . , R, (7.8b)
pr ' Beta (αr, βr) , for all r = 1, . . . , R, (7.8c)
σr ' Gamma (1 + ζr, θr) , for all r = 1, . . . , R, (7.8d)

where the hyperparameters will express the uncertainty about the register-based population
and the detection probability. The values for αr and βr are taken from (7.5). Regarding the
hyperparameters θr and ζr, notice that the modes of the gamma distributions are at τr = ζr · θr
and the variances are given by V (τr) = (ζr + 1) · θ2

r . We shall parameterise these gamma
distributions in terms of the register-based population densities σreg

r as

ζr · θr = σ
reg
r + ∆σr,√

(ζr + 1) · θ2
r = εr · σreg

r ,

where εr can be viewed as the coefficient of variation for σreg
r and ∆σr can be interpreted as the

bias for σreg
r . This parametrization implies that
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θr(∆σr, εr) =
σ

reg
r

2

(
1 +

∆σr

σ
reg
r

)
√√√√1 +

(
2εr

1 + ∆σr
σ

reg
r

)2

− 1

 ,
ζr(∆σr, εr) =

2√√√√1 +

(
2εr

1+ ∆σr

σ
reg
r

)2

− 1

. (7.9)

Under assumptions (7.8) and assuming αr, βr � 1, as above, we get

P
(
N|Nnet) =

R∏
r=1

negbin

(
Nr −Nnet

r ;
βr

αr + βr
·Q(θr), N

net
r + 1 + ζr

)
(7.10)

where Q(θr) ≡ Arθr
1+Arθr

. The interpretation of this hierarchy is also simple. It is just a Poisson-
gamma model in which the gamma parameters have been chosen so that we account for the
uncertainty in the register-based population figures N reg

r .

Usual point estimators are easily derived from (7.10) as well as accuracy indicators such as
posterior variance or credible intervals are computed from the distribution (7.10).

Expression (7.10) contains the uncertainty of both the observation and the state processes.

7.2.2. Implementation step by step

Let us see now how to the methodology using functions from the the inference pack-
age. First, the input files are read and the deduplication factors calculated as it is shown in
the following code. The input files in this stage comes from the deduplication package
(duplicity.csv), destim package (the location probabilities files) and an from external
source (the regions.csv file).

In these lines the steps are: set the folder where the location probabilities files are stored and
the prefix of these input file names, read the other input files (duplicity and regions) and then
compute the deduplication factors.

library(inference, warn.conflicts = FALSE)

path <- ’extdata’
prefix <- ’postLocDevice’

postLocPath <- system.file(path, package = ’inference’)
dpFileName <- system.file(path, ’duplicity.csv’, package = ’inference’)
rgFileName <- system.file(path, ’regions.csv’, package = ’inference’)

omega_r <- computeDeduplicationFactors(dupFileName = dpFileName,
regsFileName = rgFileName,
postLocPrefix = prefix,
postLocPath = postLocPath)

head(omega_r)
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region omega1 omega2
1: 4 0.9786578 0.02134223
2: 6 0.7116936 0.28830636
3: 9 0.6520971 0.34790293
4: 3 0.7876368 0.21236317
5: 10 0.7199611 0.28003894
6: 8 0.8367990 0.16320103

Then, we can compute the parameters needed by the distribution functions used to estimate
the target population count. The computeDistrParams() function computes the parameters
needed by all three distributions presented in the previous subsection: αr, βr, θr and ζr. The
computations are performed under the assumption that ∆σr = 0 and εr = 10−5 unless the user
specifies other values for them. The input files needed in this step are: nnet.csv which is
one of the outputs of the aggregation package containing the random variates generated
for each region, the file with the population count for each geographical region (named here
pop reg.csv) which can be taken from a population register, the penetration rates of the
MNO in each of the geographical regions (named in our example pnt rates.csv) which
can be obtained from the MNO itself or from another telecommunication authority and the
parameters of the grid (grid.csv). In the code presented below we used the files included in
the inference package, but they can be replaced by the user with his/her own files easily.

nFileName <- system.file(path, ’nnet.csv’, package = ’inference’)
nnet <- readNnetInitial(nFileName)
pRFileName <- system.file(path, ’pop_reg.csv’, package = ’inference’)
pRateFileName <- system.file(path, ’pnt_rate.csv’, package = ’inference’)
grFileName <- system.file(path, ’grid.csv’, package = ’inference’)
params <- computeDistrParams(omega = omega_r,

popRegFileName = pRFileName,
pntRateFileName = pRateFileName,
regsFileName = rgFileName,
gridFileName = grFileName)

head(params)

region omega1 omega2 pntRate regionArea_km2 N0 dedupPntRate
1: 1 0.6878592 0.31214077 0.3684211 10.5 38 0.3109215
2: 2 0.8991648 0.10083522 0.4000000 7.5 55 0.3798330
3: 3 0.7876368 0.21236317 0.4153846 12.0 65 0.3712784
4: 4 0.9786578 0.02134223 0.4615385 10.0 39 0.4566134
5: 5 0.6734889 0.32651114 0.3666667 10.0 60 0.3068063
6: 6 0.7116936 0.28830636 0.3720930 12.5 43 0.3184546

alpha beta theta zeta Q
1: 11.81502 26.18498 3.619048e-10 9999999173 3.8e-09
2: 20.89081 34.10919 7.333334e-10 9999999173 5.5e-09
3: 24.13310 40.86690 5.416667e-10 9999999173 6.5e-09
4: 17.80792 21.19208 3.900000e-10 9999999173 3.9e-09
5: 18.40838 41.59162 6.000000e-10 9999999173 6.0e-09
6: 13.69355 29.30645 3.440000e-10 9999999173 4.3e-09

Then, the population count distribution at t0 is computed. As it has been explained before,
three distributions can be used: Beta Negative Binomial, Negative Binomial or the state process
Negative Binomial. The distribution used to compute the population count is specified using
the popDistr parameter which can have three values BetaNegBin, NegBin or STNegBin.
This function also needs the population count detected by the network computed using the
aggregation package and read from a csv file. The result of the computeInitialPopulation
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is a list object with one or two elements. If the parameter rndVal is FALSE the list will have
a single element with descriptive statistics for the population count, which is a data.table ob-
ject with the following columns: region, Mean, Mode, Median, Min, Max, Q1, Q3,
IQR, SD, CV, CI LOW, CI HIGH. If rndVal is TRUE the list will have a second element
which is a data.table object containing the random values generated for each region. The name
of the two list elements giving the descriptive statistics and random values for time t are stats
and rnd values.

# Beta Negative Binomial distribution
n_bnb <- computeInitialPopulation(nnet = nnet,

params = params,
popDistr = ’BetaNegBin’,
rndVal = TRUE)

head(n_bnb$stats)

region Mean Mode Median Min Max Q1 Q3 IQR SD CV CI_LOW CI_HIGH
[1,] 1 43 41 39 13 136 31 50 19 17.74 41.55 22.00 77.00
[2,] 2 60 57 58 24 142 49 69 20 16.19 26.98 38.00 87.53
[3,] 3 80 68 77 42 176 66 92 25 19.32 24.07 54.97 113.50
[4,] 4 38 33 37 14 102 30 44 14 11.41 29.86 23.50 58.00
[5,] 5 77 64 73 26 182 62 89 28 23.19 30.02 47.97 120.06
[6,] 6 49 36 46 14 140 36 58 22 18.41 37.59 26.00 82.03

head(n_bnb$rnd_values)

region N NPop
1: 1 11.0 46.0
2: 1 9.0 42.0
3: 1 13.0 52.0
4: 1 12.0 33.0
5: 1 12.0 35.0
6: 1 12.5 30.5

Here N is the population count detected by the network and NPop is the target population
count.

# Negative Binomial distribution
n_nb <- computeInitialPopulation(nnet = nnet,

params = params,
popDistr = ’NegBin’,
rndVal = TRUE)

head(n_nb$stats)

region Mean Mode Median Min Max Q1 Q3 IQR SD CV CI_LOW CI_HIGH
[1,] 1 40 34 39 12 82 32 46 14 11.23 28.40 23.94 59.00
[2,] 2 58 51 57 27 100 50 65 15 11.89 20.46 41.00 80.00
[3,] 3 79 76 78 48 130 70 86 16 12.63 16.08 60.00 100.03
[4,] 4 37 36 36 17 66 32 42 10 7.95 21.52 25.00 50.50
[5,] 5 75 75 74 33 128 64 84 20 15.10 20.21 51.50 100.50
[6,] 6 44 43 44 18 84 36 51 14 10.82 24.41 28.00 62.50
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head(n_nb$rnd_values)

region N NPop
1: 1 11.0 24.0
2: 1 9.0 33.0
3: 1 13.0 61.0
4: 1 12.0 32.0
5: 1 12.0 49.0
6: 1 12.5 79.5

# State process Negative Binomial distribution
n_stnb <- computeInitialPopulation(nnet = nnet,

params = params,
popDistr= ’STNegBin’,
rndVal = TRUE)

head(n_stnb$stats)

region Mean Mode Median Min Max Q1 Q3 IQR SD CV CI_LOW CI_HIGH
[1,] 1 37 36 37 22 55 34 41 8 5.45 14.71 29.00 45.53
[2,] 2 55 54 54 36 73 51 59 8 6.09 11.10 45.00 64.50
[3,] 3 69 68 68 49 96 64 74 9 6.72 9.74 58.00 80.00
[4,] 4 37 36 37 22 56 33 40 7 5.13 13.95 29.00 45.00
[5,] 5 63 62 63 42 88 58 68 9 6.89 10.91 52.00 74.50
[6,] 6 42 40 42 26 60 38 46 8 5.51 13.05 33.97 51.00

head(n_stnb$rnd_values)

region N NPop
1: 1 11.0 36.0
2: 1 9.0 33.0
3: 1 13.0 40.0
4: 1 12.0 42.0
5: 1 12.0 36.0
6: 1 12.5 36.5

7.3. The dynamical approach: population at t > t0

7.3.1. Brief methodological description

In this section we focus on the probability distributions for the number of individuals Ntr

in the target population at region r for times t > t0, then the dynamical component is taken
into consideration. Currently, we consider only closed populations, i.e. neither individuals nor
devices enter into or leave the territory under analysis along the whole time period.

Our reasoning tries to introduce as less assumptions as possible. Thus, we begin by consid-
ering a balance equation. Let us denote by Nt,rs the number of individuals moving from region
s to region r in the time interval (t− 1, t). Then, we can write:

66



7.3 The dynamical approach: population at t > t0

Ntr = Nt−1r +

NT∑
rt=1
rt 6=r

Nt,rrt −
Nr∑
rt=1
rt 6=r

Nt,rtr

=

NT∑
rt=1

τt,rrt ·Nt−1rt , (7.11)

where we have defined τt,rs =
Nt,rs
Nt−1s

(0 if Nt−1s = 0). Notice that τt,rs can be interpreted as an
aggregate transition probability from region s to region r at time interval (t− 1, t) in the target
population.

We make the assumption that individuals detected by the network move across regions in

the same way as individuals in the target population. Thus, we can use τnet
t,rs ≡

Nnet
t,rs

Nnet
t−1s

to model

τt,rs. In particular, as our first choice we shall postulate τt,rs = τnet
t,rs.

The probability distributions of Nnet
st−1 and [Nnet

t ]sr = Nnet
t,rs were indeed already computed in

the aggregation layer (see chapter 6).

7.3.2. Implementation step by step

Now, we show the implementation of the dynamical procedure by computing the population
count distribution at time instants t > t0. As it was done for the hierarchical model, we show the
three distributions: Beta Negative Binomial, Negative Binomial and the state process Negative
Binomial.

The target population distribution is computed using computePopulationT() function.
As inputs, it needs the population distribution at t0 (here we will use all three previous results),
the file with the population detected by the network moving from one region to another (an
output of the aggregation package) and an optional parameter rndVal. The result of this
function is a list with one element for each time instant (including t0). Each element of the list
is also a list with one or two elements, depending on the value of the rndVal parameter. If
rndVal is TRUE there are two elements in the list corresponding to time instant t. The first
one is a data.table object with some descriptive statistics for the population count at time t,
containing the following columns:region, Mean, Mode, Median, Min, Max, Q1, Q3,
IQR, SD, CV, CI LOW, CI HIGH. The second one is a data.table object with the random
values for population count generated for each region, with the following columns: region,
iter, NPop. If rndVal is FALSE the list for time instant t contains only the first element
previously mentioned. The name of the list element corresponding to time instant t is t and
the name of the two list elements giving the descriptive statistics and random values are stats
and rnd values.

First, we set the name of the file with the population detected by the network moving from
one region to another (output of the aggregation package (see chapter 6 and Oancea et al.
(2020a)). Notice that this file is stored as a zip archive because it could be very large. Then we
call computePopulationT() function to obtain the population count estimates at t > t0.

nnetODFile <- system.file(path, ’nnetOD.zip’, package = ’inference’)
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# Beta Negative Binomial distribution
nt_bnb <- computePopulationT(nt0 = n_bnb$rnd_values,

nnetODFileName = nnetODFile,
rndVal = TRUE)

To display the results we select a random time instant first and then display the results for it:

times <- names(nt_bnb)
t <- sample(1:length(times), size = 1)
t
head(nt_bnb[[t]]$stats)

region Mean Mode Median Min Max Q1 Q3 IQR SD CV CI_LOW CI_HIGH
[1,] 1 35 33 33 9 88 27 41 14 11.89 34.35 18 56
[2,] 2 67 60 65 31 142 57 76 19 14.82 22.16 46 93
[3,] 3 166 161 164 96 259 150 181 31 23.38 14.11 131 205
[4,] 4 41 32 40 14 93 33 48 15 11.08 27.09 25 60
[5,] 5 81 80 80 45 137 70 89 19 15.07 18.70 58 106
[6,] 6 23 19 22 2 52 17 27 10 7.66 33.73 12 36

head(nt_bnb[[t]]$rnd_values)

region iter NPop
1: 1 1 52
2: 2 1 57
3: 3 1 184
4: 4 1 49
5: 5 1 80
6: 6 1 33

The iter column shows the index of the random value generated for a region. The total
number of random values generated for each region equals the same number used in the
aggregation package that provides the input for this function.

# Negative Binomial distribution
nt_nb <- computePopulationT(nt0 = n_nb$rnd_values,

nnetODFileName = nnetODFile,
rndVal = TRUE)

# to display results, select a random time instant
times <- names(nt_nb)
t <- sample(1:length(times), size = 1)
t
head(nt_nb[[t]]$stats)

region Mean Mode Median Min Max Q1 Q3 IQR SD CV CI_LOW CI_HIGH
[1,] 1 36 35 35 11 80 28 42 14 10.62 29.84 20 54.00
[2,] 2 58 52 57 26 110 50 65 15 11.93 20.71 40 77.06
[3,] 3 103 105 102 66 155 92 112 20 15.40 14.97 80 130.00
[4,] 4 42 39 42 13 80 36 48 12 9.64 22.67 28 58.06
[5,] 5 72 69 70 33 129 61 81 20 14.63 20.40 50 97.00
[6,] 6 35 32 34 11 66 29 40 11 8.51 24.49 22 49.00
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head(nt_nb[[t]]$rnd_values)

region iter NPop
1: 1 1 38
2: 2 1 44
3: 3 1 92
4: 4 1 43
5: 5 1 64
6: 6 1 23

# State process Negative Binomial distribution
nt_stnb <- computePopulationT(nt0 = n_stnb$rnd_values,
nnetODFileName = nnetODFile,
rndVal = TRUE)

# to display results, select a random time instant
times <- names(nt_stnb)
t <- sample(1:length(times), size = 1)
t
head(nt_stnb[[t]]$stats)

region Mean Mode Median Min Max Q1 Q3 IQR SD CV CI_LOW CI_HIGH
[1,] 1 32 26 32 9 62 26 38 12 9.17 28.26 19 48
[2,] 2 63 57 62 33 109 55 71 16 12.02 19.07 45 84
[3,] 3 149 149 149 86 201 138 160 22 15.86 10.61 126 175
[4,] 4 41 42 41 19 81 35 47 12 9.16 22.23 27 57
[5,] 5 61 58 61 31 100 53 68 15 11.26 18.36 44 80
[6,] 6 20 18 19 4 44 15 24 9 6.54 33.12 11 31

head(nt_stnb[[t]]$rnd_values)

region iter NPop
1: 1 1 35
2: 2 1 53
3: 3 1 152
4: 4 1 48
5: 5 1 51
6: 6 1 27

7.4. Origin-destination matrices

7.4.1. Brief methodological description

The inference of the origin-destination matrices for the target population is more delicate
than the present population because auxiliary information from population registers do not
contain this kind of information. Therefore, the statistical models proposed above for the present
population estimation cannot be applied. As a first important conclusion we point out that, in
our view, National Statistical Plans should start considering what kind of auxiliary information
is needed to make a more accurate use of Mobile Network Data and new digital data, in general.

We can provide a simple argument extending the above model to produce credible intervals
for the origin-destination matrices. IfNtr and τt,rs denote the number of individuals of the target
population at time t in region r and the aggregate transition probability from region s to region
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r at the time interval (t − 1, t), then we can simply define Nt,rs = Nt−1s × τt,rs and trivially
build the origin-destination matrix for each time interval (t − 1, t). Under the same general
assumption as before, if individuals are to move across the geographical territory independently
of their mobile network operator (or even not being a subscriber or carrying two devices), we
can postulate as a first simple choice τt,rs = τnet

t,rs, as before.

7.4.2. Implementation step by step

As final step, the origin-destination matrices for all pairs of time instants time from-time to
are computed. We follow the implementation in the R package inference and the three distri-
butions: Beta Negative Binomial, Negative Binomial and the state process Negative Binomial.

This computation is performed by computePopulationOD() function which takes the
same input parameters as computePopulationT(). The result of this function is again a list
with one element for each pair of time from-time to. Each element of the list is also a list with
one or two elements, depending on the value of the rndVal parameter. If rndVal is TRUE there
are two elements in the list corresponding to a time instant pair (time from, time to). The
first one is a data.table object with some descriptive statistics for the origin-destination matrix,
containing the following columns: region from, region to, Mean, Mode, Median,
Min, Max, Q1, Q3, IQR, SD, CV, CI LOW, CI HIGH. The second one is a data.table
object with the random values for origin-destination matrix generated for each pair of time
instants time from-time to and each pair of regions region from-region to, with the
following columns: region from, region to, iter, NPop. If rndVal is FALSE the
list for a pair of time instants time from-time to contains only the first element previ-
ously mentioned. The name of the list element corresponding to a pair of time instants is
time from-time to and the name of the two list elements giving the descriptive statistics and
random values are stats and rnd values.

# Beta Negative Binomial distribution
OD_bnb <- computePopulationOD(nt0 = n_bnb$rnd_values,

nnetODFileName = nnetODFile,
rndVal = TRUE)

# to display results, select a random time instant
time_pairs <- names(OD_bnb)
i <- sample(1:length(time_pairs), size = 1)
time_pairs[i]
head(OD_bnb[[i]]$stats)

region_from region_to Mean Mode Median Min Max Q1 Q3 IQR SD
[1,] 1 1 34 28 33 6 95 26 41 15 11.81
[2,] 1 2 1 0 0 0 12 0 0 0 1.35
[3,] 1 3 0 0 0 0 0 0 0 0 0.00
[4,] 1 4 0 0 0 0 5 0 0 0 0.50
[5,] 1 5 0 0 0 0 0 0 0 0 0.00
[6,] 1 6 0 0 0 0 0 0 0 0 0.00

CV CI_LOW CI_HIGH
[1,] 34.50 17.96 56.00
[2,] 259.79 0.00 3.64
[3,] NaN 0.00 0.00
[4,] 665.94 0.00 0.00
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[5,] NaN 0.00 0.00
[6,] NaN 0.00 0.00

head(OD_bnb[[i]]$rnd_values)

region_from region_to iter NPop
1: 1 1 1 63
2: 1 2 1 0
3: 1 3 1 0
4: 1 4 1 0
5: 1 5 1 0
6: 1 6 1 0

# Negative Binomial distribution
OD_nb <- computePopulationOD(nt0 = n_nb$rnd_values,

nnetODFileName = nnetODFile,
rndVal = TRUE)

# to display results, select a random time instant
time_pairs <- names(OD_nb)
i <- sample(1:length(time_pairs), size = 1)
time_pairs[i]
head(OD_nb[[i]]$stats)

region_from region_to Mean Mode Median Min Max Q1 Q3 IQR SD CV
[1,] 1 1 32 30 31 5 79 25 38 13 9.99 30.85
[2,] 1 2 0 0 0 0 9 0 0 0 1.25 253.77
[3,] 1 3 0 0 0 0 0 0 0 0 0.00 NaN
[4,] 1 4 0 0 0 0 5 0 0 0 0.49 667.92
[5,] 1 5 0 0 0 0 0 0 0 0 0.00 NaN
[6,] 1 6 0 0 0 0 0 0 0 0 0.00 NaN

CI_LOW CI_HIGH
[1,] 18 50.00
[2,] 0 3.45
[3,] 0 0.00
[4,] 0 0.00
[5,] 0 0.00
[6,] 0 0.00

head(OD_nb[[i]]$rnd_values)

region_from region_to iter NPop
1: 1 1 1 31
2: 1 2 1 0
3: 1 3 1 0
4: 1 4 1 0
5: 1 5 1 0
6: 1 6 1 0

# State process Negative Binomial distribution
OD_stnb <- computePopulationOD(nt0 = n_stnb$rnd_values,
nnetODFileName = nnetODFile,
rndVal = TRUE)

71



7 The inference layer

# to display results, select a random time instant
time_pairs <- names(OD_stnb)
i <- sample(1:length(time_pairs), size = 1)
time_pairs[i]
head(OD_stnb[[i]]$stats)

region_from region_to Mean Mode Median Min Max Q1 Q3 IQR SD CV
[1,] 1 1 30 32 30 8 60 24 36 12 8.83 29.17
[2,] 1 2 0 0 0 0 8 0 0 0 1.17 252.68
[3,] 1 3 0 0 0 0 0 0 0 0 0.00 NaN
[4,] 1 4 0 0 0 0 5 0 0 0 0.44 664.15
[5,] 1 5 0 0 0 0 0 0 0 0 0.00 NaN
[6,] 1 6 0 0 0 0 0 0 0 0 0.00 NaN

CI_LOW CI_HIGH
[1,] 17.19 45.00
[2,] 0.00 3.25
[3,] 0.00 0.00
[4,] 0.00 0.00
[5,] 0.00 0.00
[6,] 0.00 0.00

head(OD_stnb[[i]]$rnd_values)

region_from region_to iter NPop
1: 1 1 1 37.846154
2: 1 2 1 3.153846
3: 1 3 1 0.000000
4: 1 4 1 0.000000
5: 1 5 1 0.000000
6: 1 6 1 0.000000

7.5. The inference REST API

7.5.1. A conceptual overview

The inference package can also expose its main functions as a http REST API imple-
mented using the plumber package (Trestle Technology, LLC, 2018). We have to mention from
the beginning that this feature is an add-on, i.e. inference package can be used without this
interface as presented in the previous sections. By adding this extra-functionality we wanted to
open a new development track for future versions of our packages because it presents a series of
advantages. Exposing the functionalities of this package as a http API has several advantages:

APIs are flexible, easy to deploy and maintain, and they are accessible by multiple clients
at the same time;

APIs can be accessed via Internet by anyone without install any R package on his/her
computer (destim, deduplication, aggregation, inference), so, our software is
easily accessible;

a user can write not only R code to access the functions exposed by the inference
package, but he/she can use any language (Java, Python, etc.) capable of sending API
requests over Internet;
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for large datasets, the functions from the inference package can take a long time to
compute their results. In this case the inference package can be installed on a powerful
computer that makes public its API to all the users, saving thus further investments in
infrastructure;

Using a http REST API to access the processing functions in the inference package is
in line with the proposed models of mobile phone data usage: the data sets stays in the MNO
premises and the statisticians perform their data analyses calling functions from the available
API. Of course, the functions available through the API should be first agreed between the
MNOs and statistical offices. In a real environment, more precaution should be taken, i.e. using
encrypted connections or even VPNs.

In figure 7.1 we have a representation of the interaction between a client and the inference
API.
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Figure 7.1: The client-server architecture of inference.

A client that can be a script/program written in R, Python, Java or any other language
sends a request to the Web server exposing the API. In turn, the server calls the specific R
functions invoked by the API sending them the parameters extracted from the body of the
request. An R instance runs the function and sends back the results to the server. The server
packs the results in a supported format (JSON for example) and sends the response to the client
which unpacks the body of the response to get the requested data.

7.5.2. API example step by step

We implemented this feature using the plumber R package. The code presented below is
the equivalent of the previous examples, but it uses the API to call functions of the inference
package. The first step is to install the inference package on the server which can be the local
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7 The inference layer

computer (as we will use in our examples) or another true Web server accessible via Internet.

In our examples we use the same computer as client and server and we need to run two
instances of R. In one instance we will start the http API:

library(plumber)
pathPL <-’plumber’
initPop_api <- plumber::plumb(system.file(pathPL, ’plumb.R’,

package = ’inference’))
initPop_api$run(host = ’127.0.0.1’, port = 8000)

The address 127.0.0.1 can be changed with the address of any other server. After running
these lines of code, if we access the localhost at port 8000 we will see the interface shown in
figure 7.2.

Figure 7.2: The client-server architecture of inference.

Here we can see the names of the endpoints of our API as well as the methods that can be used
to access them (in our case GET and POST). Our API exposes the computeDeduplicationFactors(),
computeDistrParams(), computeInitialPopulation(), computePopulationT() and
computePopulationOD() as main processing functions and getPath() and readNnetInitial()
needed for intermediate steps. The end points of the API have the same names as the functions
they make public.

Now we have to switch to the other R instance which will act as a client. First we have
to set the folder where the file with duplicity probabilities (duplicity.csv, comming from
deduplication package) and the file defining the regions (regions.csv, defined by the
user) are stored and the prefix of the posterior location probabilities files for all devices (files that
are the output of the destim package). These example files are provided in the inference
package but the user can change them with his/her own files.
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7.5 The inference REST API

Please note that if you run this example using a true client-server configuration, where the
client and the server reside on different machines, in the same or different networks, the IP
addresses should be updated accordingly. The path of the files needed for computation should
be also updated according to their actual location.

library(httr)
library(jsonlite)
library(data.table)

# Set the folder where the necessary input files are stored and
# the prefix of the input file names.
path <- ’extData’
prefix <- ’postLocDevice’
dpFileName <- system.file(path, ’duplicity.csv’,

package = ’inference’)
rgFileName <- system.file(path, ’regions.csv’,

package = ’inference’)

Next, we compute the deduplication factors. For this we have prepare the body of the http
request, set the API path, set the url of the API and then send the request. In our example
we used the POST method to send this request. The body of the http request contains the
parameters needed by the R function that computes the deduplication factors. They are sent
packing them in JSON format.

# prepare the body of the http request
body <- list(
.dupFileName = dpFileName,
.regsFileName = rgFileName,
.postLocPrefix = prefix,
.postLocPath = postLocPath

)

# set API path
pathDedup <- ’computeDeduplicationFactors’

# send POST Request to API
url <- "http://127.0.0.1:8000"
raw.result <- POST(url = url,

path = pathDedup,
body = body,
encode = ’json’)

Now we obtained the result. First, we check that everything went OK (we have to obtain
code 200) and then unpack it from JSON format back to an R object:

# check status code
raw.result$status_code

# transform back the results from json format
omega_r <- as.data.table(fromJSON(rawToChar(raw.result$content)))

Next, we compute the parameters of the posterior distribution of the population count using
a similar approach: prepare the input data and build the body of the http request, set the API
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path and then send the request. After the API send back the response we check the status code
(it should be 200 if all went OK) and unpack the response from JSON to an R object.

# Compute the parameters of the distribution
# First reads the number of individuals detected by network
nFileName <- system.file(path, ’nnet.csv’, package = ’inference’)
nnet <- readNnetInitial(nFileName)

pRFileName <- system.file(path, ’pop_reg.csv’, package = ’inference’)
pRateFileName <- system.file(path, ’pnt_rate.csv’, package = ’inference’)
grFileName <- system.file(path, ’grid.csv’, package = ’inference’)

# prepare the body of the http request
body <- list(
.omega = omega_r,
.popRegFileName = pRFileName,
.pntRateFileName = pRateFileName,
.regsFileName = rgFileName,
.gridFileName = grFileName,
.rel_bias = 0,
.cv = 1e-5

)

# set API path
pathDistr <- ’computeDistrParams’

# send POST Request to API
raw.result <- POST(url = url,

path = pathDistr,
body = body,
encode = ’json’)

# check status code
raw.result$status_code

# transform back the results from json format
params <- as.data.table(fromJSON(rawToChar(raw.result$content)))

We can compute now the population at initial time. In our example we will use only the
Beta Negative Binomial distribution. A similar approach should be followed for the other two
distributions.

# Compute the population count distribution at t0
# using the Beta Negative Binomial distribution

# prepare the body of the http request
body <- list(
.nnet = nnet,
.params = params,
.popDistr = ’BetaNegBin’,
.rndVal = TRUE,
.ciprob = 0.95,
.method = ’ETI’

)
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# set API path
pathInit <- ’computeInitialPopulation’

# send POST Request to API
raw.result <- POST(url = url,

path = pathInit,
body = body,
encode = ’json’)

# check status code
raw.result$status_code

# transform back the results from json format
n_bnb <- fromJSON(rawToChar(raw.result$content))

# display results
n_nb$stats
head(n_nb$rnd_values)

Computing the population at time instants t > t0 is performed as follows:

# Compute the population count distribution at time instants t > t0
# using the Beta Negative Binomial distribution
# first set the name of the file with the population moving
# from one region to another (output of the aggregation package)
nnetODFile <- system.file(path, ’nnetOD.zip’, package = ’inference’)

# prepare the body of the http request
body <- list(
.nt0 = as.data.table(n_bnb$rnd_values),
.nnetODFileName = nnetODFile,
.zip = TRUE,
.rndVal = TRUE,
.ciprob = 0.95,
.method = ’ETI’

)

# set API path
pathT <- ’computePopulationT’

# send POST Request to API
raw.result <- POST(url = url,

path = pathT,
body = body,
encode = ’json’)

# check status code
raw.result$status_code

# transform back the results from json format
nt_bnb <- fromJSON(rawToChar(raw.result$content))

# display results
# first, select a random time instant
times <- names(nt_bnb)
t <- sample(1:length(times), size = 1)
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t
nt_bnb[[t]]$stats
head(nt_bnb[[t]]$rnd_values)

Finally, we show how to compute the origin-destination matrix:

# Compute the Origin-Destination matrices for all pairs of time
# instants time_from-time_to using the Beta Negative Binomial distribution

# prepare the body of the http request
body <- list(
.nt0 = as.data.table(n_bnb$rnd_values),
.nnetODFileName = nnetODFile,
.zip = TRUE,
.rndVal = TRUE,
.ciprob = 0.95,
.method = ’ETI’

)

# set API path
pathOD <- ’computePopulationOD’

# send POST Request to API
raw.result <- POST(url = url,

path = pathOD,
body = body,
encode = ’json’)

# check status code
raw.result$status_code

# transform back the results from json format
OD_bnb <- fromJSON(rawToChar(raw.result$content))

# display results
time_pairs <- names(OD_bnb)
# first, select a random time instants pair
i <- sample(1:length(time_pairs), size = 1)
time_pairs[i]
OD_bnb[[i]]$stats
head(OD_bnb[[i]]$rnd_values)

The http REST API of the inference can be called from any programming language or
programs (like curl for example) capable of sending http requests. We show here a small
Python script that demonstrates how to use the R inference API from another programming
language. In this example we show only how to compute the population at initial time, but the
rest of the computations are done in a similar way. The steps are the same as in the preceding
example with two exceptions: we need to know the path where the input files are stored and we
call getPath API method and to read the number of individuals detected by the network for
which we called getNnetInitial API method. These two intermediate API calls were not
necessary in the R example since they are available as functions of the plumber package.

� �
1 ""import requests
2 import simplejson
3 import pandas as pd
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4
5 data = {"path" : "extData"}
6 data_json = simplejson .dumps (data )
7
8 session = requests .Session ( )
9 session .trust_env = False

10 r = session .post ("http://127.0.0.1:8000/getPath" ,
11 data = data_json )
12
13 path = simplejson .loads (r .content ) [ 0 ]
14 prefix = ’postLocDevice’
15 postLocPath = path
16 dpFileName = path +"/" + "duplicity.csv"
17 rgFileName = path + "/" + "regions.csv"
18
19 body = {\
20 ".dupFileName" :dpFileName ,\
21 ".regsFileName" :rgFileName ,\
22 ".postLocPrefix" :prefix ,\
23 ".postLocPath" :path\
24 }
25
26 body_json = simplejson .dumps (body )
27 r = session .post ("http://127.0.0.1:8000/computeDeduplicationFactors" ,
28 data = body_json )
29
30 omega_r = simplejson .loads (r .content )
31 omega_r_df = pd .read_json (r .content )
32
33 omega_r_df
34
35 pRFileName = path +"/" + "pop_reg.csv"
36 pRateFileName = path +"/" + "pnt_rate.csv"
37 grFileName = path +"/" + "grid.csv"
38
39 body = { \
40 ".omega" :omega_r , \
41 ".popRegFileName" : pRFileName , \
42 ".pntRateFileName" : pRateFileName , \
43 ".regsFileName" : rgFileName , \
44 ".gridFileName" : grFileName , \
45 ".rel_bias" : 0 , \
46 ".cv" : 1e−5 \
47 }
48
49 body_json = simplejson .dumps (body )
50 r = session .post ("http://127.0.0.1:8000/computeDistrParams" ,
51 data = body_json )
52
53 params = simplejson .loads (r .content )
54 params_df = pd .read_json (r .content )
55
56 params_df
57
58 nnetFileName = path +"/" + "nnet.csv"
59 body = {".nnetFileName" :nnetFileName}
60 body_json = simplejson .dumps (body )
61 r = session .post ("http://127.0.0.1:8000/getNnetInitial" ,
62 data = body_json )
63 nnet_r = simplejson .loads (r .content )
64
65 body = {\
66 ".nnet" : nnet_r , \
67 ".params" : params , \
68 ".popDistr" : ’BetaNegBin’ ,\
69 ".rndVal" : True ,\
70 ".ciprob" : 0 . 9 5 ,\
71 ".method" : ’ETI’\
72 }
73 body_json = simplejson .dumps (body )
74 r = session .post ("http://127.0.0.1:8000/computeInitialPopulation" ,
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75 data = body_json )
76
77 popInitStats = simplejson .loads (r .content ) [’stats’ ]
78 popInitVals = simplejson .loads (r .content ) [’rnd_values’ ]
79
80 stats = pd .DataFrame (popInitStats )
81 vals = pd .DataFrame (popInitVals )
82
83 stats
84 vals
85 %\end{verbatim}� �

7.6. Some remarks about computational efficiency

Functions in this package make use of the processing features of the data.table package
which implements them very efficiently. Since population at t depends on population at t− 1,
the computation of the target population distributions at different time instants is inherently
sequential. Functions that takes a longer time to execute display a progress bar to show how the
computations advance.

In the API mode, the computational efficiency could be supported by a powerful server
machine. Moreover, parallelization of the computations is achieved on server if several clients
call in the same time different functions from API. For a real production environment a load
balancer could be added too (available in nginx or one can use a docker-based solution ?).
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Further developments

This chapter is devoted to gather some reflections and conclusions for future work which
will be part of the national efforts of the authors of this document and of the activity of the future
ESS Task Force on MNO data. The following steps can be mainly divided in two approaches:
the methodological modules and the computational implementation.

In the case of the methodological part, several branches to follow have been pointed out
in the section about future prospects on the deliverable of methodology (Salgado et al., 2020).
In summary, the methodological framework proposed does not intend to provide closed and
definitive methods, but to put in place a first concrete substantiation of the ESS Reference
Methodological Framework for Mobile Network Data. Much work remains to be done in the fu-
ture. Results are encouraging, since we achieve modularity and evolvability, as well as rigorous
accuracy indicators, giving a first solution to the main problem that comprise all the modules of
the process.

Regarding the computational issues, we have developed all the implementation needed to
execute the methods of the whole process. This implementation has been done in R which is a
free software environment focus on statistical computing. Then, all the code is open, available
and free to be used. Following the modularity ideas, an R package has been developed for each
module of the process:

Module R package
Geolocation destim
Deduplication deduplication
Aggregation aggregation
Inference inference

Regarding the future prospects about the organization of the developed software, we expect
to connect all these packages with the aim to make them more user-friendly. The idea is to make
another layer over these packages with some high level functions available to the user. These
functions are devoted to obtain the final results executed in the inference layer which are the
goal of the process. Then, they will call some functions from the
textttinference package which in turn will call functions from the aggregation package which
will call functions from the deduplication package which will call functions from the destim
package. The results will go back to the calling functions until they will reach again the top of
the hierarchy and the users will have the answers to their query. The user requests go from the
top of the hierarchy to the bottom and the answers go back from the bottom layer to the top.
These calls will be optimized (borrowing the principle used by cache memories), for example
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if a new inference problem implies the same geolocation problem and the results are already
available, they will be not be computed again but provided from the storage. Of course, these
optimizations will require some changes of the existing code with a considerable effort but will
make all the intermediate steps transparent to users. The current interface will still be available,
though.

In terms of computational efficiency, although several improvements have been done, there
is a lot of work to upgrade the current implementation. Let see some possibilities:

Geolocation layer: There are some ideas about parallelization and a possible migration to take
advantage of some highly optimized linear algebra libraries such as Intel Math Kernel
Library (MKL). From now on, we have given priority to the idea of being able to distribute
the software fully free with GPL license. At present, the estimation is done individually
per device, efficiency can be substantially improved if it would be done for the whole
set of the device all at once. Other high performance versions of the BLAS library can
be considered too as alternatives to Intel MKL: OpenBLAS (Qian et al., 2013), GotoBLAS
or GoToBLAS2 (Goto and van de Geijn, 2008), ATLAS (Whaley et al., 2001; Whaley and
Dongarra, 1999).

Deduplication layer: All the improvements achieved in the geolocation layer will cause an
improvement in the efficiency of the Bayesian approaches to execute deduplication. In
relation to the trajectory approach, as well as in the majority of the processes, it has been
taken into account the sparsity of the matrices of distances to speed up the executions. One
computational intensive step of the trajectory method consist in computing the dispersion
radius which involves the calculation of the (Euclidean) distances between the rows of a
data matrix. For this specific step we use the standard dist function but in the future we
can consider replacing it with rpuDist from rpud package (Yau, 2010) or gpuDist from
gputools package (Buckner et al., 2010) which uses GPU to speed-up the computations.
However, the increase in the speed of execution comes with the cost of decreasing the
portability of the deduplication package since both rpud and gputools requires
CUDA (Cook, 2012).

Aggregation layer: The aggregation module is base on a Poisson multinomial distribution
and to increase the speed of execution the generation of random values from a Poisson
multinomial distribution should be improved. Now we use a Monte Carlo approach to
generate these values but wiser method could greatly improve the speed.

Inference layer: The computations performed in this layer are inherently serial, since the pop-
ulation at t depends on population at t − 1, thus parallelization is not straightforward
here. In case of very large data sets, some performance tests should be run to test if
parallelization of computations inside a time iteration by dividing the datasets into several
chunks and assigning them to different processors is efficient. Each processor should have
enough computations to perform in order to overcome the overhead of setting up the
cluster of processors.

For all packages in our software stack the parallelization is implemented using the standard
parallel package available for R. We plan to test if other parallelization techniques and R
packages can provide higher speedups and less memory requirements. To be more specific we
intend to test Rth package (Matloff and Schmidt, 2015) the provides a function to compute the
distance between rows of a matrix and has also parallel implementations for random number
generators. Comparing to other GPU-oriented packages mentioned before, Rth support several
parallel backends: CUDA, OpenMP or Intel TBB. So, if an NVIDIA card is not available to work
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with CUDA, Rth functions uses the multithreading capabilities offered by OpenMP or TBB
libraries. Another package that we intend to use in our performance tests is Rdsm (Matloff, 2014)
which offers a shared-memory approach to parallel processing saving memory and execution
time compared with the standard parallel package, although it is available only on Unix-like
operating systems.

At this moment, only the inference package has a WEB REST API that allow calling its
functions remotely. This decision was based on the fact that it is the package that provides
the highest level functions to users: population estimations for different geographical areas.
We intend to add such APIs to all packages developed so far, thus letting statisticians perform
different data analysis at various levels of the methodological stack remotely.

Moreover, all the proposed methodology is supported by the results obtained from simula-
tions due to the simulator (see Oancea et al., 2019), and all the implementation done in packages.
In relation to the simulations, the future work is focused on testing different scenarios and
compare the results to have a better understanding of the end-to-end process.

In conclusion, the whole methodology for the use of mobile network data in official statistical
production needs further research and testing. In our view, Official Statistics should avoid past
errors and struggle for a process-oriented approach to production. Concentrating on statistical
domains with an abuse of one-off use cases will bring the risk of growing silos again in the
production. In our view, the construction of this process-oriented statistical process with mobile
network data should be made in partnerships with MNOs clearly identifying those critical
elements in the methodology (which data to access and how to process them). The process must
be end-to-end so that the production of official statistics can be openly disseminated.

In the same way as it is said for the methodology part, the implementation has to be done
following the modularity of the process and with the aim to avoid developing software just for
some specific statistical domain. The main result of this work is not in the details themselves of
each module but on the whole process as a modular structure.
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Package ‘inference’
October 28, 2020

Type Package

Title R package for computing the number of individuals in the target population condi-
tioned on the number of individuals detected by the MNO and auxiliary information.

Version 0.1.0

Author Bogdan Oancea <bogdan.oancea@gmail.com>, David Sal-
gado <david.salgado.fernandez@ine.es> Sandra Barra-
gan <sandra.barragan.andres@ine.es>

Maintainer Bogdan Oancea <bogdan.oancea@gmail.com>

Description R package for computing the number of individuals in the target population condi-
tioned on the number of individuals detected by the mobile network and some auxiliary informa-
tion

License GPL3, EUPL

Imports data.table,
deduplication,
Matrix,
doParallel,
parallel,
extraDistr

Encoding UTF-8

LazyData true

RoxygenNote 7.1.1

Suggests knitr,
rmarkdown

VignetteBuilder knitr

Collate 'buildCluster.R'
'computeDeduplicationFactors.R'
'computeDistrParams.R'
'utils.R'
'computeInitialPopulation.R'
'computeTau.R'
'computeStats.R'
'computePopulationOD.R'
'computePopulationT.R'
'computeRegionAreas.R'
'example.R'
'exampleAPI.R'
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2 computeDeduplicationFactors

'inference.R'
'readNnetInitial.R'

R topics documented:
computeDeduplicationFactors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
computeDistrParams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
computeInitialPopulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
computePopulationOD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
computePopulationT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
exampleAPI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
inference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
readNnetInitial . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

Index 15

computeDeduplicationFactors

Computes the deduplication factors for each region.

Description

Computes the deduplication factors for each region of the map. For a complete description of these
factors an interested reader can consult the description of the methodological framework https://
webgate.ec.europa.eu/fpfis/mwikis/essnetbigdata/images/f/fb/WPI_Deliverable_I3_A_
proposed_production_framework_with_mobile_network_data_2020_05_31_draft.pdf.

Usage

computeDeduplicationFactors(
dupFileName,
regsFileName,
postLocPrefix,
postLocPath

)

Arguments

dupFileName The name of the file with the duplicity probabilities. This file is the output of
the deduplication package.

regsFileName The name of the .csv file defining the regions. It has two columns: tile,region.
The first column contains the IDs of each tile in the grid while the second con-
tains the number of a region. This file is defined by the user and it can be created
with any text editor.

postLocPrefix The file name prefix of the files with posterior location probabilities for each
device. The whole file name is composed by a concatenation of prefixName, _
and deviceID. The extension of these files is .dt.csv

postLocPath The path to the location where the posterior location probabilities are stored.
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Value

A data.table object with the deduplication factors for each region.

References

https://github.com/MobilePhoneESSnetBigData

computeDistrParams Computes the parameters of the population counts distributions.

Description

Computes a series of parameters needed to build the target population counts distribution. For
a complete description of these parameters an interested reader can consult the description of the
methodological framework https://webgate.ec.europa.eu/fpfis/mwikis/essnetbigdata/images/
f/fb/WPI_Deliverable_I3_A_proposed_production_framework_with_mobile_network_data_
2020_05_31_draft.pdf.

Usage

computeDistrParams(
omega,
popRegFileName,
pntRateFileName,
regsFileName = NULL,
gridFileName = NULL,
rel_bias = 0,
cv = 1e-05

)

Arguments

omega The deduplication factors. They are computed by computeDeduplicationFactors
function and it is a data.table object with the deduplication factors for each re-
gion.

popRegFileName The name of the file with the population counts for each region taken from a
population register. It has 2 columns: region,N0.

pntRateFileName

The name of the file with the penetration rates for each region. It has 2 columns:
region,pntRate.

regsFileName The name of the .csv file defining the regions. It has two columns: tile,region.
The first column contains the IDs of each tile in the grid while the second con-
tains the number of a region. This file is defined by the user and it can be created
with any text editor. It is required only for the state process negative binomial
distribution.

gridFileName The name of the .csv file with the grid parameters. It is required only for the
state process negative binomial distribution.

rel_bias The value of the relative bias for the population density of each region. The
default value is 0.

cv The coefficient of variation for the population density of each region. The de-
fault value is 0.
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Value

A data.table object with the following columns region,omega1,omega2,pnrRate,regionArea_km2,
N0,dedupPntRate,alpha,beta. If regsFileName and gridFileName are not NULL the result
will have 3 more columns:region,omega1,omega2,pnrRate,regionArea_km2,N0,dedupPntRate,
alpha,beta,theta,zeta,Q. They are needed only for the state process negative binomial distri-
bution.

References

https://github.com/MobilePhoneESSnetBigData

computeInitialPopulation

Computes the distribution of the population count at initial time in-
stant.

Description

Computes the distribution of the population count at initial time instant using one of the three dis-
tributions: Negative Binomial, Beta Negative Binomial or State Process Negative Binomial. For
details of the theoretical background behind this distribution an interested reader can consult the
description of the methodological framework https://webgate.ec.europa.eu/fpfis/mwikis/
essnetbigdata/images/f/fb/WPI_Deliverable_I3_A_proposed_production_framework_with_
mobile_network_data_2020_05_31_draft.pdf.

Usage

computeInitialPopulation(
nnet,
params,
popDistr,
rndVal = FALSE,
ciprob = NULL,
method = "ETI"

)

Arguments

nnet The random values generated with aggregation package for the number of
individuals detected by the network.

params The parameters of the distribution. It should be a data.table object with the
following columns: region,omega1,omega2,pnrRate,regionArea_km2,N0,
dedupPntRate,alpha,beta,theta,zeta,Q.

popDistr The distribution to be used for population count. This parameter could have one
of the following values: NegBin (negative binomial distribution), BetaNegBin
(beta negative binomial distribution) or STNegBin (state process negative bino-
mial distribution).

Appendix A Reference manual for the inference package

89



computePopulationOD 5

rndVal If FALSE the result return by this function will be a list with a single element, a
data.table object with the following columns: region,Mean,Mode,Median,SD,
Min,Max,Q1,Q3,IQR,CV,CI_LOW,CI_HIGH. If TRUE the list will have a second
element which is a data.table object containing the random values generated for
each region.

ciprob Value of probability of the CI (between 0 and 1) to be estimated. If NULL the
default value is 0.89.

method The method to compute credible intervals. It could have 2 values, ’ETI’ or
’HDI’. The default value is ’ETI.

Value

A list object with one or two elements. If rndVal is FALSE the list will have a single element
with descriptive statistics for the population count, which is a data.table object with the following
columns: region,Mean,Mode,Median,Min,Max,Q1,Q3,IQR,SD,CV,
CI_LOW,CI_HIGH. If rndVal is TRUE the list will have a second element which is a data.table object
containing the random values generated for each region. The name of the two list elements giving
the descriptive statistics and random values for time t are ’stats’ and ’rnd_values’.

References

https://github.com/MobilePhoneESSnetBigData

computePopulationOD Computes the origin-destination matrices.

Description

Computes the origin-destination matrices for all pairs of time instants time_from-time_to. For
details of the theoretical background of the origin-destination matrices computation an interested
reader can consult the description of the methodological framework https://webgate.ec.europa.
eu/fpfis/mwikis/essnetbigdata/images/f/fb/WPI_Deliverable_I3_A_proposed_production_
framework_with_mobile_network_data_2020_05_31_draft.pdf.

Usage

computePopulationOD(
nt0,
nnetODFileName,
zip = TRUE,
rndVal = FALSE,
ciprob = NULL,
method = "ETI"

)

Arguments

nt0 The population at t0.

nnetODFileName the name of the file where the population moving from one region to another is
stored. This is an output of the aggregation package.
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zip If TRUE the file where where the population moving from one region to another
is stored is a zipped csv file, otherwise it is simple csv file.

rndVal Controls if the random values generated for each t are returned or not in the
result of this function. If TRUE, the random values generated according to the
corresponding distribution are returned in the results, if FALSE only the sum-
mary statistics for each t and region are returned.

ciprob Value of probability of the CI (between 0 and 1) to be estimated. If NULL the
default value is 0.89.

method The method to compute credible intervals. It could have 2 values, ’ETI’ or
’HDI’. The default value is ’ETI.

Value

A list with one element for each pair of time_from-time_to. Each element of the list is also a list
with one or two elements, depending on the value of the rndVal parameter. If rndVal is TRUE there
are two elements in the list corresponding to time instant a pair time_from-time_to. The first one is
a data.table object with some descriptive statistics for the origin-destination matrix, containing the
following columns:region_from,region_to,Mean,Mode,Median,Min,Max,Q1,Q3,IQR,SD,CV,
CI_LOW,CI_HIGH. The second one is a data.table object with the random values for origin-destination
matrix generated for each pair of time instants time_from-time_to and each pair of regions region_from-
region_to, with the following columns: region_from,region_to,iter,NPop. If rndVal is FALSE
the list for a pair of time instants time-from-time_to contains only the first element previously men-
tioned. The name of the list element corresponding to a pair of time instants is ’time_from-time_to’
and the name of the two list elements giving the descriptive statistics and random values are ’stats’
and ’rnd_values’.

References

https://github.com/MobilePhoneESSnetBigData

computePopulationT Computes population counts at time instants t >t0.

Description

Computes the distribution of the population counts for all times instants t > t0. For details of the
theoretical background behind this distribution an interested reader can consult the description of the
methodological framework https://webgate.ec.europa.eu/fpfis/mwikis/essnetbigdata/images/
f/fb/WPI_Deliverable_I3_A_proposed_production_framework_with_mobile_network_data_
2020_05_31_draft.pdf.

Usage

computePopulationT(
nt0,
nnetODFileName,
zip = TRUE,
rndVal = FALSE,
ciprob = NULL,
method = "ETI"

)

Appendix A Reference manual for the inference package

91



example 7

Arguments

nt0 The population at t0.

nnetODFileName the name of the file where the population moving from one region to another is
stored. This is an output of the aggregation package.

zip If TRUE the file where where the population moving from one region to another
is stored is a zipped csv file, otherwise it is simple csv file.

rndVal Controls if the random values generated for each t >t0 are returned or not in
the result of this function. If TRUE, the random values generated according
to the corresponding distribution are returned in the results, if FALSE only the
summary statistics for each t>t0 and region are returned.

ciprob Value of probability of the CI (between 0 and 1) to be estimated. If NULL the
default value is 0.89.

method The method to compute credible intervals. It could have 2 values, ’ETI’ or
’HDI’. The default value is ’ETI.

Value

A list with one element for each time instant (including t0). Each element of the list is also a list
with one or two elements, depending on the value of the rndVal parameter. If rndVal is TRUE
there are two elements in the list corresponding to time instant t. The first one is a data.table
object with some descriptive statistics for the population count at time t, containing the following
columns:region,Mean,Mode,Median,Min,Max,Q1,Q3,IQR,SD,CV,CI_LOW,CI_HIGH. The second
one is a data.table object with the random values for population count generated for each region,
with the following columns: region,iter,NPop. If rndVal is FALSE the list for time instant t con-
tains only the first element previously mentioned. The name of the list element corresponding to
time instant t is ’t’ and the name of the two list elements giving the descriptive statistics and random
values for time t are ’stats’ and ’rnd_values’.

References

https://github.com/MobilePhoneESSnetBigData

example Example of using the inference package

Description

This is just an example on how to use this package to generate the distribution of the population
count.

Usage

example()

Details

This is a script that shows how to use the functions of this package to compute the distribution of the
initial target population count, the distribution of the population count at successive time instants
and the origin-destination matrix.
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8 example

References

https://github.com/MobilePhoneESSnetBigData

Examples

# set the folder where the necessary input files are stored and the prefix of the input file names.
path <- 'extData'

prefix <- 'postLocDevice'

# compute the deduplication factors
dpFileName <- system.file(path, 'duplicity.csv', package = 'inference')
rgFileName <- system.file(path, 'regions.csv', package = 'inference')

omega_r <- computeDeduplicationFactors(dpFileName, rgFileName, prefix,
system.file(path, package = 'inference'))

# reads the number of individuals detected by network
nFileName <- system.file(path, 'nnet.csv', package = 'inference')
nnet <- readNnetInitial(nFileName)

# compute the parameters of the distribution
pRFileName <- system.file(path, 'pop_reg.csv', package = 'inference')
pRateFileName <- system.file(path, 'pnt_rate.csv', package = 'inference')
grFileName <- system.file(path, 'grid.csv', package = 'inference')
params <- computeDistrParams(omega_r, pRFileName, pRateFileName, rgFileName, grFileName)

# A. Compute the population count distribution at t0
# compute the population count distribution using the Beta Negative Binomial distribution
n_bnb <- computeInitialPopulation(nnet, params, popDistr = 'BetaNegBin', rndVal = TRUE)

# display results
n_bnb$stats
head(n_bnb$rnd_values)

# compute the population count distribution using the Negative Binomial distribution
n_nb <- computeInitialPopulation(nnet, params, popDistr = 'NegBin', rndVal = TRUE)

# display results
n_nb$stats
head(n_nb$rnd_values)

# compute the population count distribution using the state process Negative Binomial distribution
n_stnb <- computeInitialPopulation(nnet, params, popDistr= 'STNegBin', rndVal = TRUE)

# display results
n_stnb$stats
head(n_stnb$rnd_values)

# B. compute the population count distribution at time instants t > t0
# first set the name of the file with the population moving from one region
# to another (output of the aggregation package)
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nnetODFile <- system.file(path, 'nnetOD.zip', package = 'inference')

# 1.Using the Beta Negative Binomial distribution
nt_bnb <- computePopulationT(n_bnb$rnd_values, nnetODFile, rndVal = TRUE)

# display results
# first, select a random time instant
times <- names(nt_bnb)
t <- sample(1:length(times), size = 1)
t
nt_bnb[[t]]$stats
head(nt_bnb[[t]]$rnd_values)

# 2.Using the Negative Binomial distribution
nt_nb <- computePopulationT(n_nb$rnd_values, nnetODFile, rndVal = TRUE)

# display results
# first, select a random time instant
times <- names(nt_nb)
t <- sample(1:length(times), size = 1)
t
nt_nb[[t]]$stats
head(nt_nb[[t]]$rnd_values)
# 3.Using the state process Negative Binomial distribution
nt_stnb <- computePopulationT(n_stnb$rnd_values, nnetODFile, rndVal = TRUE)

# display results
# first, select a random time instant
times <- names(nt_stnb)
t <- sample(1:length(times), size = 1)
t
nt_stnb[[t]]$stats
head(nt_stnb[[t]]$rnd_values)

# C. compute the origin-destination matrices for all pairs of time instants time_from-time_to
# first set the name of the file with the population moving from one region
# to another (output of the aggregation package)
nnetODFile <- system.file(path, 'nnetOD.zip', package = 'inference')

# 1.Using the Beta Negative Binomial distribution
OD_bnb <- computePopulationOD(n_bnb$rnd_values, nnetODFile, rndVal = TRUE)

# display results
time_pairs <- names(OD_bnb)
# first, select a random time instants pair
i <- sample(1:length(time_pairs), size = 1)
time_pairs[i]
OD_bnb[[i]]$stats
head(OD_bnb[[i]]$rnd_values)

# 2.Using the Negative Binomial distribution
OD_nb <- computePopulationOD(n_nb$rnd_values, nnetODFile, rndVal = TRUE)

# display results
time_pairs <- names(OD_nb)
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# first, select a random time instants pair
i <- sample(1:length(time_pairs), size = 1)
time_pairs[i]
OD_nb[[i]]$stats
head(OD_nb[[i]]$rnd_values)

# 3.Using the state process Negative Binomial distribution
OD_stnb <- computePopulationOD(n_stnb$rnd_values, nnetODFile, rndVal = TRUE)

# display results
time_pairs <- names(OD_stnb)
# first, select a random time instants pair
i <- sample(1:length(time_pairs), size = 1)
time_pairs[i]
OD_stnb[[i]]$stats
head(OD_stnb[[i]]$rnd_values)

exampleAPI Example of using the API inference

Description

This is just an example on how to use the REST API of this package to generate the distribution of
the population count.

Usage

exampleAPI()

Details

This is a script that shows how to use the REST API of this package to compute the distribution
of the initial target population count, the distribution of the population count at successive time
instants and the origin-destination matrix.

References

https://github.com/MobilePhoneESSnetBigData

Examples

########################################
# First, in a separate R console run the following instructions that start the http API
# on your local computer
# One can replace 127.0.0.1 with the API address of another Web server
library(plumber)
pathPL <-'plumber'
initPop_api <- plumber::plumb(system.file(pathPL, 'plumb.R', package = 'inference'))
initPop_api$run(host = '127.0.0.1', port = 8000)
########################################

library(httr)

Appendix A Reference manual for the inference package

95



exampleAPI 11

library(jsonlite)
library(data.table)

# set the folder where the necessary input files are stored and the prefix of the input file names.
path <- 'extData'
prefix <- 'postLocDevice'
postLocPath <- system.file(path, package = 'inference')

# compute the deduplication factors
dpFileName <- system.file(path, 'duplicity.csv', package = 'inference')
rgFileName <- system.file(path, 'regions.csv', package = 'inference')

# prepare the body of the http request
body <- list(

.dupFileName = dpFileName,

.regsFileName = rgFileName,

.postLocPrefix = prefix,

.postLocPath = postLocPath
)

# set API path
pathDedup <- 'computeDeduplicationFactors'

# send POST Request to API
url <- "http://127.0.0.1:8000"
raw.result <- POST(url = url, path = pathDedup, body = body, encode = 'json')

# check status code
raw.result$status_code

# transform back the results from json format
omega_r <- as.data.table(fromJSON(rawToChar(raw.result$content)))

# Compute the parameters of the distribution
# First reads the number of individuals detected by network
nFileName <- system.file(path, 'nnet.csv', package = 'inference')
nnet <- readNnetInitial(nFileName)

pRFileName <- system.file(path, 'pop_reg.csv', package = 'inference')
pRateFileName <- system.file(path, 'pnt_rate.csv', package = 'inference')
grFileName <- system.file(path, 'grid.csv', package = 'inference')

# prepare the body of the http request
body <- list(

.omega = omega_r,
.popRegFileName = pRFileName,
.pntRateFileName = pRateFileName,
.regsFileName = rgFileName,
.gridFileName = grFileName,
.rel_bias = 0,
.cv = 1e-5

)

# set API path
pathDistr <- 'computeDistrParams'

# send POST Request to API
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raw.result <- POST(url = url, path = pathDistr, body = body, encode = 'json')

# check status code
raw.result$status_code

# transform back the results from json format
params <- as.data.table(fromJSON(rawToChar(raw.result$content)))

# Compute the population count distribution at t0 using the Beta Negative Binomial distribution

# prepare the body of the http request
body <- list(

.nnet = nnet,

.params = params,

.popDistr = 'BetaNegBin',

.rndVal = TRUE,

.ciprob = 0.95,

.method = 'ETI'
)

# set API path
pathInit <- 'computeInitialPopulation'

# send POST Request to API
raw.result <- POST(url = url, path = pathInit, body = body, encode = 'json')

# check status code
raw.result$status_code

# transform back the results from json format
n_bnb <- fromJSON(rawToChar(raw.result$content))

# display results
n_bnb$stats
head(n_bnb$rnd_values)

# Compute the population count distribution at time instants t > t0 using the
# Beta Negative Binomial distribution
# first set the name of the file with the population moving from one region
# to another (output of the aggregation package)
nnetODFile <- system.file(path, 'nnetOD.zip', package = 'inference')

# prepare the body of the http request
body <- list(

.nt0 = as.data.table(n_bnb$rnd_values),

.nnetODFileName = nnetODFile,

.zip = TRUE,

.rndVal = TRUE,

.ciprob = 0.95,

.method = 'ETI'
)

# set API path
pathT <- 'computePopulationT'

# send POST Request to API
raw.result <- POST(url = url, path = pathT, body = body, encode = 'json')
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# check status code
raw.result$status_code

# transform back the results from json format
nt_bnb <- fromJSON(rawToChar(raw.result$content))

# display results
# first, select a random time instant
times <- names(nt_bnb)
t <- sample(1:length(times), size = 1)
t
nt_bnb[[t]]$stats
head(nt_bnb[[t]]$rnd_values)

# Compute the Origin-Destination matrices for all pairs of time instants
# time_from-time_to using the Beta Negative Binomial distribution

# prepare the body of the http request
body <- list(

.nt0 = as.data.table(n_bnb$rnd_values),

.nnetODFileName = nnetODFile,

.zip = TRUE,

.rndVal = TRUE,

.ciprob = 0.95,

.method = 'ETI'
)

# set API path
pathOD <- 'computePopulationOD'

# send POST Request to API
raw.result <- POST(url = url, path = pathOD, body = body, encode = 'json')

# check status code
raw.result$status_code

# transform back the results from json format
OD_bnb <- fromJSON(rawToChar(raw.result$content))

# display results
time_pairs <- names(OD_bnb)
# first, select a random time instants pair
i <- sample(1:length(time_pairs), size = 1)
time_pairs[i]
OD_bnb[[i]]$stats
head(OD_bnb[[i]]$rnd_values)

inference inference: A package for computing the distribution of the number
of individuals in the target population conditioned on the number of
individuals detected by MNO.

Appendix A Reference manual for the inference package

98



14 readNnetInitial

Description

This package contains functions to compute the distribution of the number of individuals in the
target population conditioned on the number of individuals detected by MNO. For an example on
how to use this package please read example or exampleAPI.

readNnetInitial Reads the number of individuals detected by network at initial time.

Description

Reads the number of individuals detected by network at initial time instant, as they are generated
by the aggregation package.

Usage

readNnetInitial(nnetFileName)

Arguments

nnetFileName The file name of the random values generated by the aggregation package for
the number of individuals detected by network for each region and each time
instant.

Value

A data.table object with two columns: region,N
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Package ‘aggregation’
October 28, 2020

Type Package

Title R package for aggregation of device numbers into population number

Version 0.1.0

Author Bogdan Oancea <bogdan.oancea@gmail.com>, David Sal-
gado <david.salgado.fernandez@ine.es> Sandra Barra-
gan <sandra.barragan.andres@ine.es>

Maintainer Bogdan Oancea <bogdan.oancea@gmail.com>

Description R package for aggregation of the number of devices detected by mobile net-
work into the number of individuals.

License GPL3, EUPL

Imports data.table,
deduplication,
Matrix,
doParallel,
parallel,
extraDistr

Encoding UTF-8

LazyData true

RoxygenNote 7.1.1

Suggests knitr,
rmarkdown

VignetteBuilder knitr

Collate 'aggregation.R'
'buildCluster.R'
'buildPostLocJointProbs.R'
'rNnet_Event.R'
'doAggr.R'
'example.R'
'nIndividuals.R'
'nIndividuals3.R'
'rNnetEvent.R'
'rNnetJoint_Event.R'
'rNnetEventOD.R'

1
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2 example

R topics documented:

aggregation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
rNnetEvent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
rNnetEventOD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

Index 7

aggregation aggregation: A package for computing the number of individuals de-
tected by the network.

Description

This package contains functions to compute the number of individuals detected by the network in
each geogrphical region as well as the number of individuals detected by the network moving from
one region to another at successive time instants. For an example on how to use this package please
read example.

example Example of using the aggregation package

Description

This is just an example on how to use this package to generate random values from a Poisson
multinomial distribution in order to obtain a point estimate of the number of individuals detected
by mobile network in a region.

Usage

example()

Details

This is a script that shows how to use the functions of this package to compute a point estimate of the
number individuals detected by the network in each region and the number of individuals moving
from one region to another. From the set of random values one can obtain any point estimate: mean.
mode, median.

References

https://github.com/MobilePhoneESSnetBigData
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Examples

# set the folder where the necessary input files are stored and the prefix of
# the input file names.
path <- 'extdata'

prefix='postLocDevice'

# gets the series of time instants from the simulation.xml file.
simParams <-deduplication::readSimulationParams(system.file(path,
'simulation.xml', package = 'aggregation'))
time_from <- simParams$start_time
time_to <- simParams$end_time
time_incr <- simParams$time_increment
times<-seq(from=time_from, to=time_to-time_incr, by = time_incr)

# set the grid file name, i.e. the file the parameters of the grid
grFile <- system.file(path, 'grid.csv', package = 'aggregation')

# set the duplicity probabilities file name, i.e. the file with duplicity
# probability for each device
dpFile<-system.file(path, 'duplicity.csv', package = 'aggregation')

# set the regions file name, i.e. the file defining the regions for which we
# need the estimation of the number of individuals detected by network.
rgFile<-system.file(path, 'regions.csv', package = 'aggregation')

# generate n random values
n <- 1e3
nNet <- rNnetEvent(n, grFile, dpFile, rgFile, system.file(path,
package = 'aggregation'), prefix, times = times)

# print the mean number of detected individuals for each region, for each
# time instant
regions <- as.numeric(unique(nNet$region))
times <- unique(nNet$time)

for(r in regions) {
print(paste0("region: ", r))
for(t in times) {

print(paste0("time instant: ", t, " number of individuals: " ,
round(mean(nNet[region == r][time ==t]$N))))

}
}

# For the origin-destination matrix we proceed in a similar way
prefixJ <- 'postLocJointProbDevice'
nnetOD <- rNnetEventOD(n, dpFile, rgFile, system.file(path,
package = 'aggregation'), prefixJ)

# The origin-destination matrix can be computed now very simple
# First we choose two consecutive time instants
t1 <- 0
t2 <- 10
# The we extract the regions:

Appendix B Reference manual for the aggregation package

104



4 rNnetEvent

regions_from <- sort(as.numeric(unique(nnetOD$region_from)))
regions_to <- sort(as.numeric(unique(nnetOD$region_to)))

# Now we compute the origin-destination matrix:
ODmat <- matrix(nrow = length(regions_from), ncol = length(regions_to))
for(r1 in regions_from) {

for(r2 in regions_to) {
ODmat[r1,r2] <-
round(mean(nnetOD[time_from==t1][time_to==t2][region_from==r1][region_to==r2]$Nnet))

}
}
ODmat

rNnetEvent Generates random values according to a Poisson multinomial proba-
bility distribution.

Description

Generates random values according to a Poisson multinomial probability distribution. A point es-
timation derived from this distribution (mean, mode) represents an estimation of the number of
individuals detected by the network in a region. Regions are composed as a number of adjacent
tiles. This is the only one function of this package available to users to compute an estimation of the
number of detected individuals. For a theoretical background an interested reader can find more de-
tails in the methodological framework available here: https://webgate.ec.europa.eu/fpfis/
mwikis/essnetbigdata/images/f/fb/WPI_Deliverable_I3_A_proposed_production_framework_
with_mobile_network_data_2020_05_31_draft.pdf

Usage

rNnetEvent(
n,
gridFileName,
dupFileName,
regsFileName,
postLocPath,
prefix,
times,
seed = 123

)

Arguments

n The number of random values to be generated.

gridFileName The name of the .csv file with the grid parameters.

dupFileName The name of the .csv file with the duplicity probability for each device. This is
an output of the deduplication package.
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regsFileName The name of the .csv file defining the regions. It has two columns: tile,region.
The first column contains the IDs of each tile in the grid while the second con-
tains the number of a region. This file is defined by the user and it can be created
with any text editor.

postLocPath The path where the files with the posterior location probabilities for each de-
vice can be found. A file with the location probabilities should have the name
prefix_ID.csv where ID is replaced with the device ID and prefix is given as
a parameter to this function.

prefix A prefix that is used to compose the file name with posterior location probabili-
ties.

times A vector with the time instants when the events were registered.

seed The value of the random seed to be used by the random number generator.

Value

A data.table object with the following columns: time,region,N,iter. The last column contains
the index of the random value (given in column N) generated for each time instant and region.

rNnetEventOD Generates random value according to a Poisson multinomial distribu-
tion needed to estimate the origin destination matrices.

Description

Generates random value according to a Poisson multinomial distribution needed to estimate the
origin destination matrices. This is a high level function, the only one to be called by users to esti-
mate the number of individuals going from one region to another. For a theoretical background an
interested reader can find more details in the methodological framework available here: https://
webgate.ec.europa.eu/fpfis/mwikis/essnetbigdata/images/f/fb/WPI_Deliverable_I3_A_
proposed_production_framework_with_mobile_network_data_2020_05_31_draft.pdf The ac-
tual omputations are performed using a parallelization (transparent to the users) which uses the
whole number of (logical) cores.

Usage

rNnetEventOD(
n,
dupFileName,
regsFileName,
postLocJointPath,
prefix,
seed = 123

)

Arguments

n The number of random values to be generated.

dupFileName The name of the .csv file with the duplicity probability for each device. This is
an output of the deduplication package.
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regsFileName The name of the .csv file defining the regions. It has two columns: tile,region.
The first column contains the IDs of each tile in the grid while the second con-
tains the number of a region. This file is defined by the user and it can be created
with any text editor.

postLocJointPath

The path where the files with the posterior location probabilities for each de-
vice can be found. A file with the location probabilities should have the name
prefix_ID.csv where ID is replaced with the device ID and prefix is given as
a parameter to this function.

prefix A prefix that is used to compose the file name with posterior location probabili-
ties.

Value

A data table object with the following columns: time_from,time_to,region_from,region_to,Nnet,iter.
The number of detected individuals moving from a region to another between two succesive time in-
stants is given in column Nnet while the last column gives the index of the random value generated
for this number.
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October 30, 2020

Type Package

Title R package for computing the duplicity probility for each mobile device.

Version 0.1.0

Author Bogdan Oancea <bogdan.oancea@gmail.com>, David Sal-
gado <david.salgado.fernandez@ine.es> Sandra Barra-
gan <sandra.barragan.andres@ine.es>

Maintainer Bogdan Oancea <bogdan.oancea@gmail.com>

Description R package for computing the duplicity probility for each mobile device, i.e. the probabil-
ity of a device to be in a 2-to-1 correspondence with its owner.

License GPL3, EUPL

Imports data.table,
destim,
Matrix,
doParallel,
parallel,
rgeos,
stringr,
xml2,
Rsolnp

Encoding UTF-8

LazyData true

RoxygenNote 7.1.1

Suggests knitr,
rmarkdown

VignetteBuilder knitr

Collate 'antennaNeighbours.R'
'aprioriDuplicityProb.R'
'aprioriOneDevice.R'
'buildCentroidProbs.R'
'buildCentroids.R'
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'buildDeltaProb.R'
'buildDeltaProb2.R'
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2 R topics documented:

'checkConnections_step1.R'
'tileEquivalence.R'
'distance_coverArea.R'
'checkConnections_step2.R'
'computeDuplicity.R'
'computeDuplicityBayesian.R'
'dispersionRadius.R'
'readPostLocProb.R'
'computeDuplicityTrajectory.R'
'computePairs.R'
'deduplication.R'
'example1.R'
'example2.R'
'example3.R'
'fitModels.R'
'getDeviceIDs.R'
'getConnections.R'
'getEmissionProbs.R'
'getEmissionProbsJointModel.R'
'getGenericModel.R'
'getJointModel.R'
'modeDelta.R'
'readCells.R'
'readEvents.R'
'readGridParams.R'
'readSimulationParams.R'
'splitReverse.R'

R topics documented:
antennaNeighbours . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
aprioriDuplicityProb . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
aprioriOneDeviceProb . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
checkConnections_step1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
checkConnections_step2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
computeDuplicity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
computeDuplicityBayesian . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
computeDuplicityTrajectory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
computePairs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
deduplication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
example1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
example2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
example3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
fitModels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
getConnections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
getDeviceIDs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
getEmissionProbs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
getEmissionProbsJointModel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
getGenericModel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
getJointModel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
modeDelta . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
readCells . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
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readEvents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
readGridParams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
readPostLocProb . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
readSimulationParams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
tileEquivalence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

Index 28

antennaNeighbours Computes a list of neighbouring antennas.

Description

Computes a list of pairs antennaID1-antennaID2 with neighbouring antennas. Two antennas are
considered neighbours if their coverage areas overlap (i.e. their intersection is not void).

Usage

antennaNeighbours(coverarea)

Arguments

coverarea a data.table object with two columns: antennaID and cell. The first column
contains the ID of each antenna while the second one contains a sp object that
represents the coverage area of the corresponding antenna. The coverage area is
obtained by calling readCells() function.

Value

A data.table object with a single column called nei. Each element of this column is a pair of the
form antennaID1-antennaID2 where the two antennas are considered neighbours.

aprioriDuplicityProb Apriori probability of duplicity.

Description

Apriori probability of duplicity, i.e. the probability of a device to be in a 2-to-1 correspondence
with the person who holds it. It is computed as 2 ∗ (Ndev − Ndev2)/(Ndev ∗ (Ndev − 1))
where Ndev is the total number of devices and Ndev2 is the number of devices that are in a 1-to-1
correspondence with the persons that hold them.

Usage

aprioriDuplicityProb(prob2Devices, ndevices)

Arguments

prob2Devices The probability of a person to have 2 devices. In case of using simulated data,
this parameter is read from the simulation configuration file.

ndevices The number of devices detected by the network during the time horizon under
consideration.
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Value

Apriori probability of duplicity, i.e. the probability of a device to be in a 2-to-1 correspondence
with the person who holds it.

aprioriOneDeviceProb Apriori probability of a device to be in a 1-to-1 correspondence with
its holder.

Description

Apriori probability of a device to be in a 1-to-1 correspondence with the holder. It is computed
simply as (2 ∗Ndev1−Ndev)/Ndev1 where Ndev1 is the number of devices that are in a 1-to-1
correspondence with the persons that hold them and Ndev is the total number of devices.

Usage

aprioriOneDeviceProb(prob2Devices, ndevices)

Arguments

prob2Devices The probability of a person to have 2 devices. In case of using simulated data,
this parameter is read from the simulation configuration file.

ndevices The number of devices detected by the network during the time horizon under
consideration.

Value

The apriori probability of a device to be in a 1-to-1 correspondence with its holder.

checkConnections_step1

Make the first step of the checks between the connections and the emis-
sion model.

Description

This function obtains the results of the first step of checks for the compatibility between the con-
nections observed and the emission model. It checks if each individual connection is coherent with
the probabilities in the emission matrix. In those cases when that connection is not compatible, the
connection is imputed with a missing value.

Usage

checkConnections_step1(connections, emissionProbs)

Arguments

connections A matrix with the connections, a row per device and a column per time.

emissionProbs A matrix of emission probabilities resulting from the function getEmissionProbs
in deduplication package.
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Value

A list with two elements: one is the information about the checks and the second is the matrix of
connections with imputation in the observations not compatible with the model in emissionProbs.

checkConnections_step2

Make the second step of the checks between the connections and the
emission model.

Description

This function obtains the results of the second step of checks for the compatibility between the
connections observed and the emission model. It checks that the transitions from one connections
to the following is coherent with the probabilities in the emission matrix. In those cases when
the transition is not compatible, a solution to fit the model is given with the needed time padding
coefficient.

Usage

checkConnections_step2(emissionProbs, connections, gridParams)

Arguments

emissionProbs The matrix of emission probabilities.

connections A matrix with the connections, a row per device and a column per time.

gridParams A list with the parameters of the grid:
nrow,ncol,tileX,tileY.

Value

A list with two elements" one is the information about the checks with a vector containing all the
time padding coefficients and the second is the matrix of connections with the time padding done
by using the maximum coefficient.

computeDuplicity Computes the duplicity probability for each device.

Description

Computes the duplicity probability for each device using three different methods: pairs, 1-to-1 and
trajectory. The theory behind these methods is described in detail in WPI Deliverable 3 and in the
paper An end-to-end statistical process with mobile network data for Official Statistics.
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Usage

computeDuplicity(
method,
gridFileName,
eventsFileName,
signalFileName,
antennaCellsFileName = NULL,
simulatedData = TRUE,
simulationFileName,
netParams = NULL,
path = NULL,
gamma = 0.5,
aprioriProbModel = NULL,
aprioriProbJointModel = NULL,
lambda = NULL,
handoverType = "strength",
emissionModel = NULL,
antennaFileName = NULL,
prefix = NULL

)

Arguments

method The method used to compute the duplicity probability. It could have one of the
following values: "pairs", "1to1", "trajectory".

gridFileName The name of the file with the grid parameters. This file could be the one gener-
ated by the simulation software or can be created with any text editor. The grid
file generated by the simulation software has the following columns: Origin
X,Origin Y,X Tile Dim,Y Tile Dim,No Tiles X,No Tiles Y. We are interested
only in the number of rows and columns and the tile size on OX and OY axes.
Therefore, the file provided as input to this function should have at least the
following 4 columns: No Tiles X ,No Tiles Y, X Tile Dim and Y Tile Dim.

eventsFileName The name of the file with the network events to be used. Depending on the pa-
rameter simulatedData it could be a .csv file coming from the simulation soft-
ware or from a real MNO. In case the file comes from the simulation software it
contains following columns: time,antennaID,eventCode,deviceID,x,y,tile
Only the first 4 columns are used, the rest are ignored.

signalFileName The name of the .csv file that contains the signal strength/quality for each tile
in the grid. Depending on the parameter simulatedData it could be a .csv
file coming from the simulation software or from a real MNO. In case the file
comes from the simulation software the data are organized as a matrix with
the number of rows equals to the number of antennas and the the following
columns: Antenna ID,Tile 0,Tile 1,... Tile (N-1). On the first column
there are the antenna IDs and on the rest of the columns the corresponding signal
strength/quality for each tile in the grid.

simulatedData If TRUE the input data are provided by the simulation software, otherwise real
data is used.

simulationFileName

The name of the file used to define a simulation scenario. It is the file that
was provided as input for the simulation software. This file is required only if
simulatedData is TRUE.
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netParams This parameter is required if simulatedData is FALSE, i.e. the deduplication
package uses real mobile network data. In this case, netParam is a list with two
elements: conn_threshold and prob_sec_mobile_phone. conn_threshold
is the minimum value of the signal strength/quality that can be used to connect
a mobile device to an antenna. If the signal in a region is below this value the
region is considered out of the coverage area. prob_sec_mobile_phone is the
probability of a person to have two mobile devices.

path The path where the files with the posterior location probabilities for each device
are to be found. This parameter is needed only if the "trajectory" method is used.

gamma This value is used only for the "trajectory" method and is the factor used in the
compariosn between the mode of Delta X and Delta Y and the dispersion radius.
The default value is 0.5.

aprioriProbModel

This parameter is used to initialize the apriori probabilities for the HMM model
for each device. The default value is NULL which means that by default the
models are initialized with the steady state.

lambda This parameter is used in combination with the "1-to-1" method. If it is NULL
(which is the default value) the computations follow the description given in
WPI Deliverable 3, otherwise the computations proceed as they are described
in the An end-to-end statistical process with mobile network data for Official
Statistics paper.

handoverType The handover mechanism used by the mobile network. It could have two values:
"strength" or "quality". The default value is "strength". This parameter is used to
compute the emission probabilities for the HMM models using the values from
the signal file. If this file contains the signal strength then the handoverType
should be set to "strength" and if the file contains the values of the signal quality
then the parameter should be set to "quality".

emissionModel This parameter dictates how the emission probabilities for the HMM models are
computed. It can have two values: "RSS" and "SDM". Normally, the emission
probabilities are computed using the signal values from the signal file assum-
ing that if the handoverType is set to "strength" then the signal file contains
the strength values and if the handoverType is set to "quality" the signal file
contains the quality of the signal. For demonstrative purposes the package sup-
ports unusual combinations. If handoverType is set to "strength", the signal file
contains the signal strength but the emissionModel is set to "SDM" the signal
strength values are transformed to signal quality and then the computation of the
emission probabilities uses these transformed values. If handoverType is set to
"quality", the signal file contains the signal quality but the emissionModel is set
to "RSS", the signal quality values are transformed to signal strength and then
the computation of the emission probablities uses these transformed values.

antennaFileName

The name of the xml file containing the technical parameters of the antennas
needed to transform the signal quality into signal strength and the other way
around. This is an input file of the simulation software. An example file is
included in this package. The default value is NULL because this file is only
needed to make unusual combinations between handoverType and the way the
emission probabilities are computed.

prefix The file name prefix for the files with posterior location probabilities.

cellsFileName The name of the file where the coverage areas of antennas are to be found. It is
a should be a .csv file with two values on each row: the antenna ID and a WKT
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string representing a polygon (i.e. it should start with the word POLYGON)
which is the coverage area of the corresponding antenna. This area is also called
the antenna cell.

aprioriJointModel

This parameter is used to initialize the apriori probabilities for the joint HMM
models for each pair of two devices. The default value is NULL which means
that by default the models are initialized with the steady state.

Value

a data.table object with two columns: deviceID and dupP. On the first column there are deviceIDs
and on the second column the corresponding duplicity probability, i.e. the probability that a device
is in a 2-to-1 correspondence with its holder.

computeDuplicityBayesian

Computes the duplicity probabilities for each device using a Bayesian
approach.

Description

Computes the duplicity probabilities for each device using a Bayesian approach. It uses two meth-
ods: "pairs" and "1to1". The "pairs" method considers the possible pairs of two compatible devices.
These devices were selected by computePairs() function taking into consideration the antennas
where the devices are connected and the coverage areas of antennas. Two devices are considered
compatible if they are connected to the same or to neighbouring antennas. Thus, the data set with
pairs of devices will be considerable smaller than all possible combinations of two devices. The
"1to1" method considers all pairs of two devices when computing the duplicity probability, the time
complexity being much greater than that of the "pairs" method. Both methods uses parallel com-
putations to speed up the execution. They build a cluster of working nodes and splits the pairs of
devices equally among these nodes.

Usage

computeDuplicityBayesian(
method,
deviceIDs,
pairs4dupl,
modeljoin,
llik,
P1 = NULL,
Pii = NULL,
init = TRUE,
lambda = NULL

)

Arguments

method Selects a method to compute the duplicity probabilities. It could have one of the
two values: "pairs" or "1to1". When selecting "pairs" method, the pairs4dupl
parameter contains only the compatible pairs of devices, i.e. the pairs that most
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of the time are connected to the same or to neighbouring antennas. "1to1"
method checks all possible combinations between devices to compute the du-
plicity probabilities.

deviceIDs A vector with the device IDs. It is obtained by calling the getDevices() func-
tion.

pairs4dupl A data.table object with pairs of devices and pairs of antennas where these de-
vices are connected. It can be obtained by calling computePairs() function.

modeljoin The joint HMM model returned by getJointModel() function.

llik A vector with the values of the log likelihoods after the individual HMM models
for each device were fitted. This vector can be obtained by calling fitModels()
function.

P1 The apriori duplicity probability as it is returned by aprioriDuplicityProb()
function. It is used when "pairs" method is selected.

Pii Apriori probability of a device to be in a 1-to-1 correspondence with the holder
as it is returned by aprioriOneDeviceProb() function. This parameter is used
only when "1to1" method is selected.

init A logical value. If TRUE, the fit() function uses the stored steady state as
fixed initialization, otherwise the steady state is computed at every call of fit()
function.

lambda It is used only when "1to1" method is selected and a non NULL value mean
that the computation of the duplicity probabilities is performed according to the
method described in An end-to-end statistical process with mobile network data
for Official Statistics paper.

Value

a data.table object with two columns: deviceID and dupP. On the first column there are deviceIDs
and on the second column the corresponding duplicity probability, i.e. the probability that a device
is in a 2-to-1 correspondence with the holder.

computeDuplicityTrajectory

Computes the duplicity probabilities for each device using the trajec-
tory approach.

Description

Computes the duplicity probabilities for each device using the trajectory approach described in WPI
Deliverable 3.

Usage

computeDuplicityTrajectory(
path,
prefix,
devices,
gridParams,
pairs,
P1,
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T,
gamma

)

Arguments

path The path where the files with the posterior location probabilities for each device
are to be found.

devices A vector with device IDs.

gridParams A list with the number of rows and columns of the grid and the tile dimensions
on OX and OY axes. The items of the list are named nrow, ncol, tileX and
tileY.

pairs A data.table object containing pairs with the IDs of compatible devices. It is
obtained calling buildPairs() function.

P1 The apriori probability for a device to be in 1-to-1 correspondence with its
owner.

T The sequence of time instants in the data set.

gamma A coefficient needed to compute the duplicity probability. See WPI Deliverable
3.

Value

a data.table object with two columns: deviceID and dupP. On the first column there are deviceIDs
and on the second column the corresponding duplicity probability, i.e. the probability that a device
is in a 2-to-1 correspondence with the holder.

computePairs Builds pairs of devices and corresponding connections.

Description

Builds a data.table object that contains pairs of antenna IDs in the form "antennaID1-antennaID2",
where antennaID1 corresponds to a device while antennaID2 corresponds to another device, for
each time instant over a time period when the network events are registered. These pairs are build
for each distinct combination "deviceID1-deviceID2" of devices. The rows of the data.table object
corresponds to a combination of devices and the columns corresponds to different time instants.
The first two columns contains the device IDs of each pair of devices and the rest of the columns
correspond to a time instant and contains the pairs antennaID1-antennaID2 where the two devices
are connected at that time instant.

Usage

computePairs(
connections,
ndevices,
oneToOne = TRUE,
P1 = 0,
limit = 0.05,
antennaNeighbors = NULL

)
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Arguments

connections A matrix with the antenna IDs where the mobile devices are connected at ev-
ery time instant. Each row corresponds to a device and each column to a time
instant. This matrix is obtained by calling getConnections() function.

ndevices The number of devices registered by the network. A vector with device IDs
can be obtained by calling getDevices() function and the number of devices is
simply the lenght of this vector.

oneToOne If TRUE, the result is built to apply the method "1to1" to compute the duplicity
probability for each device. This means that the result will contain all combi-
nations of devices. If FALSE, the result will consider the proximity of antennas
through the parameter antennaNeighbors and remove all the combinations of
devices that are impossible to belong to a single person. If most of the time
instants two devices are connected to two antennas that are not neighbors (i.e.
their cells don’t overlap) we consider that these two devices belong to different
persons and remove this combination of devices from the result. The term "most
of the time instants" is implemented like this: we add how many times during the
time horizon two devices are connected to neighboring antennas and than keep
in the final result only those combinations of devices with this number greater
than the quantile of the sequence 0...(Number of time instants) with probability
1-P1-limit. In this way we reduce the time complexity of the duplicity probabil-
ity computation.

P1 The apriori probability of duplicity. It is obtained by calling aprioriDuplicityProb()
function.

limit A number that stands for the error in computing apriori probability of duplicity.
antennaNeighbors

A data.table object with a single column nei that contains pairs of antenna IDs
that are neighbors in the form antennaID1-antennaID2. We consider that two
antennas are neighbors if their coverage areas has a non void intersection.

Value

a data.table object. The first two columns contain the devices indices while the rest of the columns
contains pairs antennaID1-antennaID2 with antenna IDs where the devices are connected. There is
one column for each time instant for the whole time horizon.

deduplication deduplication: A package for computing the duplicity probability for
mobile device detected by the network.

Description

This package contains functions to compute the duplicity probability for mobile device detected by
the network. It has three methods for this purpose: pairs, 1-to-1 and trajectory. The theory behind
these methods is described in detail in WPI Deliverable 3 and in the paper An end-to-end statistical
process with mobile network data for Official Statistics. For an example on how to use this package
please read example1, example2 and example3.

Details

deduplication: A package for computing the duplicity probability for mobile devices.
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12 example1

example1 Example of using deduplication package - the simple way

Description

This is just an example on how to compute duplicity probabilities using simulated data. All the
files used in this example are supposed to be produced using the simulation software. The "simu-
lation.xml" file is an exception and it is an input file for the simulation software. The files used in
this example are provided with the deduplication package.

Usage

example1()

Details

This is just an example on how to compute duplicity probabilities using simulated data. All the
files used in this example are supposed to be produced using the simulation software. The "simu-
lation.xml" file is an exception and it is an input file for the simulation software. The files used in
this example are provided with the deduplication package.This example showsthe simplest way of
using this package. It reads the necessary input data and then calls computeDuplicity function.

References

https://github.com/MobilePhoneESSnetBigData

Examples

# set the folder where the necessary input files are stored
path_root <- 'extdata'

# set the grid file name, i.e. the file where the grid parameters are found
gridfile <-system.file(path_root, 'grid.csv', package = 'deduplication')

# set the events file name, i.e. the file with network events registered during
# a simulation
eventsfile<-system.file(path_root, 'AntennaInfo_MNO_MNO1.csv',
package = 'deduplication')

# set the signal file name, i.e. the file where the signal strength/quality
# for each tile in the grid is stored
signalfile<-system.file(path_root, 'SignalMeasure_MNO1.csv',
package = 'deduplication')

# set the antenna cells file name, i.e. the file where the simulation software
# stored the coverage area for each antenna
# This file is needed only if the duplicity probabilities are computed using
# "pairs" method
antennacellsfile<-system.file(path_root, 'AntennaCells_MNO1.csv',
package = 'deduplication')

# set the simulation file name, i.e. the file with the simulation parameters
# used to produce the data set
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simulationfile<-system.file(path_root, 'simulation.xml',
package = 'deduplication')

# compute the duplicity probabilities using the "pairs" method
out1<-computeDuplicity("pairs", gridFileName = gridfile,
eventsFileName = eventsfile, signalFileName = signalfile,
antennaCellsFileName = antennacellsfile, simulationFileName = simulationfile)

# compute the duplicity probabilities using the "1to1" method
out2<-computeDuplicity("1to1", gridFileName = gridfile,
eventsFileName = eventsfile, signalFileName = signalfile,
simulatedData = TRUE, simulationFileName = simulationfile)

# compute the duplicity probabilities using the "1to1" method with lambda
out2p<-computeDuplicity("1to1", gridFileName = gridfile,
eventsFileName = eventsfile, signalFileName = signalfile,
simulatedData = TRUE, simulationFileName = simulationfile, lambda = 0.67)

# compute the duplicity probabilities using the "trajectory" method
prefix <- 'postLocDevice'
out3<-computeDuplicity("trajectory", gridFileName = gridfile,
eventsFileName = eventsfile, signalFileName = signalfile,
antennaCellsFileName = antennacellsfile, simulationFileName = simulationfile,
path= system.file(path_root, package='deduplication'), prefix = prefix)

example2 Example of using deduplication package - the long way

Description

This is just an example on how to compute duplicity probabilities using simulated data. All the
files used in this example are supposed to be produced using the simulation software. The "simu-
lation.xml" file is an exception and it is an input file for the simulation software. The files used in
this example are provided with the deduplication package.

Usage

example2()

Details

This is detailed example on how to compute duplicity probabilities using simulated data. All the
files used in this example are supposed to be produced using the simulation software. The "simu-
lation.xml" file is an exception and it is an input file for the simulation software. The files used in
this example are provided with the deduplication package. This example shows step by step all
intermediate computations performed before calling one the functions that computes the duplicity
probabilities. All three methods are used in this example: "1-to-1", "pairs" and "trajectory".

References

https://github.com/MobilePhoneESSnetBigData
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Examples

# set the folder where the necessary input files are stored

path_root <- 'extdata'

# 0. Read simulation params

simParams <-readSimulationParams(system.file(path_root, 'simulation.xml',
package = 'deduplication'))

# 1. Read grid parameters

gridParams <-readGridParams(system.file(path_root, 'grid.csv',
package = 'deduplication'))

# 2.Read network events

events <- readEvents(system.file(path_root, 'AntennaInfo_MNO_MNO1.csv',
package = 'deduplication'))

# 3. Get a list of detected devices

devices <- getDeviceIDs(events)

#4. Get connections for each device

connections <- getConnections(events)

#5. Emission probabilities are computed from the signal strength/quality file

emissionProbs <- getEmissionProbs(gridParams$nrow, gridParams$ncol,
system.file(path_root, 'SignalMeasure_MNO1.csv', package = 'deduplication'),
simParams$conn_threshold)

#6. Build joint emission probabilities

jointEmissionProbs <- getEmissionProbsJointModel(emissionProbs)

#7. Build the generic model

model <- getGenericModel(gridParams$nrow, gridParams$ncol, emissionProbs)

#8. Fit models

ll <- fitModels(length(devices), model,connections)

#9. Build the joint model

modelJ <- getJointModel(gridParams$nrow, gridParams$ncol, jointEmissionProbs)

#10. Read antenna cells and build a matrix of neighboring antennas

coverarea <- readCells(system.file(path_root, 'AntennaCells_MNO1.csv',
package = 'deduplication'))

antennaNeigh <- antennaNeighbours(coverarea)
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#11. Apriori probability of duplicity

P1 <- aprioriDuplicityProb(simParams$prob_sec_mobile_phone, length(devices))

#12. Build a matrix of pairs of devices to compute duplicity probability

pairs4dupP<-computePairs(connections, length(devices), oneToOne = FALSE, P1=P1,
limit = 0.05, antennaNeighbors = antennaNeigh)

#13. Compute duplicity probabilities using the "pairs" method (faster)

out1 <- computeDuplicityBayesian("pairs", devices, pairs4dupP, modelJ, ll, P1)

#14. Apriori probability of 2-to-1

Pii <- aprioriOneDeviceProb(simParams$prob_sec_mobile_phone, length(devices))

#15. Build a matrix of pairs of devices to compute duplicity probability

pairs4dupO<-computePairs(connections, length(devices), oneToOne = TRUE)

#16. Compute duplicity probabilities using "1to1" method

out2 <- computeDuplicityBayesian("1to1", devices, pairs4dupO, modelJ, ll,
P1 = NULL, Pii=Pii)

#17. Compute duplicity probabilities using "trajectory method"

T<-sort(unique(events[,1][[1]]))

out3 <-computeDuplicityTrajectory(path=system.file(path_root, package = 'deduplication'),
"postLocDevice", devices, gridParams, pairs4dupP, P1 = P1, T, gamma = 0.5)

example3 Example of using deduplication package - the case of incompatibility

Description

Example of using deduplication package - showing the case of incompatibility between the type of
connection in the network and the emission model.

Usage

example3()

Details

This is an example of how to force the use of an emission model that differs from the type of
connection done by the network. Thanks to the information from the simulator and the flexibility
of the functions of this package, it is possible to make the assumption of a kind of emission model
different from the real type of connection. Obviously, this incoherence has consequences. It could
cause to type of problems. Firstly there are events to antennas without signal under the assumption
made to build the emission probability matrix. Secondly, there are transitions between pairs of

Appendix C Reference manual for the deduplication package

124



16 example3

antennas which are not possible in consecutive times because there is some tile without signal
between those antennas under the assumption made to build the emission probability matrix. These
two problems can be detected by two functions in this package: checkConnections_step1() and
checkConnections_step2(). In the following example, one of these kinds of cases is shown.

References

https://github.com/MobilePhoneESSnetBigData

Examples

### READ DATA ####

# Set the folder where the necessary input files are stored

path_root <- 'extdata'

# 0. Read simulation params

simParams <- readSimulationParams(system.file(path_root, 'simulation.xml',
package = 'deduplication'))

# 1. Read grid parameters

gridParams <- readGridParams(system.file(path_root, 'grid.csv',
package = 'deduplication'))

# 2. Read network events

events <- readEvents(system.file(path_root, 'AntennaInfo_MNO_MNO1.csv',
package = 'deduplication'))

# 3. Set the signal file name, i.e. the file where the signal strength/quality
# for each tile in the grid is stored

signalFileName <- system.file(path_root, 'SignalMeasure_MNO1.csv')

# 4. Set the antennas file name

antennasFileName <- system.file(path_root, 'antennas.xml')

#### PREPARE DATA ####

# 5. Initial state distribution (prior)

nTiles <- gridParams$ncol * gridParams$nrow
initialDistr_RSS_uniform.vec <- initialDistr_SDM_uniform.vec <- rep(1 /
nTiles, nTiles)

# 6. Get a list of detected devices

devices <- getDeviceIDs(events)

# 7. Get connections for each device

connections <- getConnections(events)
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# 8. Emission probabilities are computed from the signal strength/quality file.
# In this case handoverType is strength then the emission model should be RSS.

emissionProbs_RSS <- getEmissionProbs(nrows = gridParams$nrow,
ncols = gridParams$ncol, signalFileName = signalFileName,
sigMin = simParams$conn_threshold, handoverType = simParams$connection_type[[1]],
emissionModel = "RSS", antennaFileName = antennasFileName)

# We also try to use the emission model with the SDM assumption.

emissionProbs_SDM <- getEmissionProbs(nrows = gridParams$nrow,
ncols = gridParams$ncol, signalFileName = signalFileName,
sigMin = simParams$conn_threshold, handoverType = simParams$connection_type[[1]],
emissionModel = "SDM", antennaFileName = antennasFileName)

# 9. Build joint emission probabilities for both options: RSS and SDM.

jointEmissionProbs_RSS <- getEmissionProbsJointModel(emissionProbs_RSS)

jointEmissionProbs_SDM <- getEmissionProbsJointModel(emissionProbs_SDM)

# 10. Build the generic model for both cases and the a priori
# uniform (by default)

model_RSS_uniform <- getGenericModel( nrows = gridParams$nrow,
ncols = gridParams$ncol, emissionProbs_RSS, initSteady = FALSE,
aprioriProb = initialDistr_RSS_uniform.vec)

model_SDM_uniform <- getGenericModel( nrows = gridParams$nrow,
ncols = gridParams$ncol, emissionProbs_SDM, initSteady = FALSE,
aprioriProb = initialDistr_SDM_uniform.vec)

# 11. Fit models.

ll_RSS_uniform <- fitModels(length(devices), model_RSS_uniform, connections)

ll_SDM_uniform <- fitModels(length(devices), model_SDM_uniform, connections)

# The log likelihood is infinity for those connections that are impossible
# under the model SDM (ll_SDM_uniform).

# 12. Make the checks and corresponding imputations to force the fit of SDM model.

### check1: connections incompatibles with emissionProbs are imputed as NA

check1_SDM <- checkConnections_step1(connections, emissionProbs_SDM)

check1_SDM$infoCheck_step1 connections_ImpSDM0 <-check1_SDM$connectionsImp

### check2: jumps incompatibles with emissionProbs are avoid by making time padding.

check2_SDM <- checkConnections_step2(emissionProbs = emissionProbs_SDM,
connections = connections_ImpSDM0, gridParams = gridParams)

connections_ImpSDM <- check2_SDM$connections_pad
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# 13. Fit models.

ll_SDM_uniform <- fitModels(length(devices), model_SDM_uniform, connections_ImpSDM)

# 14. Build the joint model.

modelJ_RSS_uniform <- getJointModel( nrows = gridParams$nrow,
ncols = gridParams$ncol, jointEmissionProbs = jointEmissionProbs_RSS,
initSteady = FALSE, aprioriJointProb = initialDistr_RSS_uniform.vec)

modelJ_SDM_uniform <- getJointModel( nrows = gridParams$nrow,
ncols = gridParams$ncol, jointEmissionProbs = jointEmissionProbs_SDM,
initSteady = FALSE, aprioriJointProb = initialDistr_SDM_uniform.vec)

# 15. Apriori probability of 2-to-1

Pii <- aprioriOneDeviceProb(simParams$prob_sec_mobile_phone, length(devices))

# 16. Build a matrix of pairs of devices to compute duplicity probability

pairs4dup_RSS <- computePairs(connections, length(devices), oneToOne = TRUE)

pairs4dup_SDM <- computePairs(connections_ImpSDM, length(devices), oneToOne = TRUE)

#### COMPUTE DUPLICITY ####

# 17. Compute duplicity probabilities using "1to1" method

duplicity1to1_RSS_uniform.dt <- computeDuplicityBayesian("1to1", devices,
pairs4dup_RSS, modelJ_RSS_uniform, ll_RSS_uniform, P1 = NULL, Pii=Pii)

duplicity1to1_SDM_uniform.dt <- computeDuplicityBayesian("1to1", devices,
pairs4dup_SDM, modelJ_SDM_uniform, ll_SDM_uniform, P1 = NULL, Pii=Pii)

fitModels Fits the HMM model for each device.

Description

Fits the HMM model for each device using the fit() function from destim package. The compu-
tations are done in parallel to reduce the running time using all the available cores. This function
creates a cluster of working nodes, splits the devices equally among the working nodes and assigns
a partition of devices to each node in the cluster. For Unix-like operating systems, this functions
uses a "FORK" cluster while for Windows it uses a "SOCK" cluster.

Usage

fitModels(ndevices, model, connections)
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Arguments

ndevices The number of devices.

model The HMM model returned by getGenericModel() function. This model is
fitted for each device.

connections A matrix whose elements are the antenna ID where a device is connected at
every time instant. This matrix is returned by getConnections() function.

Value

A vector of log likelihoods computed using the fitted model for each device.

getConnections Builds a matrix object containing the IDs of the antennas to which
devices are connected.

Description

Builds a matrix object containing the IDs of the antennas to which devices are connected. The
number of rows equals the number of devices and the number of columns equals the number of
time instants when the network events were recorded. An element [i,j] in the returned matrix
equals the ID of the antenna where the mobile device with index i in the ordered list of device IDs
(returned by getDeviceIDs()) is connected at the time instant with index j in the sequence of time
instants when the network events were recorded.

Usage

getConnections(events)

Arguments

events A data.table object returned by readEvents() function.

Value

A matrix object with the antenna IDs where devices are connected for every time instants in the
events file. If a device is not connected to any antenna at a time instant, the corresponding element
in the matrix will have the value NA.

getDeviceIDs Builds a vector with the IDs of the mobile devices.

Description

Builds a vector with the IDs of the mobile devices by taking the unique values from the events data
set.

Usage

getDeviceIDs(events)
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Arguments

events A data.table object that contains the events generated by the mobile network. It
is returned by the readEvents() function. The device IDs are on the second
column of this data.table object.

Value

A vector with the IDs of the mobile devices detected by the network.

getEmissionProbs Builds the emission probabilities for the HMM used to estimate the
posterior location probabilities.

Description

Builds the emission probabilities needed for the HMM used to estimate the posterior location prob-
abilities. In case of using simulated data, these probabilities are build using the signal strength or
signal quality saved by the simulation software for each tile in the grid.

Usage

getEmissionProbs(
nrows,
ncols,
signalFileName,
sigMin,
handoverType = "strength",
simulatedData = TRUE,
emissionModel = NULL,
antennaFileName = NULL

)

Arguments

signalFileName The name of the .csv file that contains the signal strength/quality for each tile
in the grid. This file is one of the outputs of the data simulator. The data are
organized as a matrix with the number of rows equals to the number of antennas
and the the following columns:
Antenna ID,Tile 0,Tile 1,... Tile (N-1). On the first column there are the
antenna IDs and on the rest of the columns the corresponding signal strength/quality
for each tile in the grid.

sigMin The minimum value of the signal strength/quality that allow a connection be-
tween a device and an antenna.

handoverType The handover mechanism used by the mobile network. It could have two values:
"strength" or "quality". It should match the types of the values in the signal file,
otherwise the results are impredictible.

simulatedData If TRUE, the input data provided to this function come from the simulator oth-
erwise the data come from a real mobile network.
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emissionModel A parameter that can take two values: "RSS" or "SDM". It indicates how the
emission probabilities are computed. This parameter is needed to force comput-
ing the emission probabilities with a "wrong" model. For example, the signal
file contains the values of the signal strength, the handoverType parameter is
set to ’strength’ but the emissionModel is set to "SDM", the values of the sig-
nal strength are transformed in signal quality and the emission probabilities are
computed using the signal quality. Such a combination should never be used
in practice but it is allowed only for demonstrative purposes: it can be use to
demonstrate that if the emission probabilities are not correctly computed then
the resulted duplicity probabilities are wrong.

antennaFileName

This parameter is needed to read the technical parameters of antennas.These
parameters are used to transform the signal strength in signal quality and the
other way around. They are needed only in the case the emission probabilities
are computed using the signal quality when the handoverType is "strength" or
when they are computed using signal quality when the handoverType is "qual-
ity".

nrow the number of rows in the grid. It can be obtained by calling readGridParams().

ncol the number of columns in the grid. It can be obtained by calling readGridParams().

Value

Returns a Matrix object with the emission probabilities for the HMM. The number of rows equals
the number of tiles in the grid and the number of columns equals the number of antennas. An
element (i,j) of this matrix corresponds to the probability of a device being in tile i to be connected
to antenna j. The row names of the matrix are the tile indexes and the column names are the antenna
IDs.

getEmissionProbsJointModel

Builds the emission probabilities for the joint HMM.

Description

Builds the emissions probabilities needed for the joint HMM used to estimate the posterior location
probabilities.

Usage

getEmissionProbsJointModel(emissionProbs)

Arguments

emissionProbs the emission probabilities (the location probabilities) computed by calling getEmissionProbs()
for each individual device.
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Value

Returns a matrix with the joint emission probabilities for the HMM. The number of rows equals the
number tiles and the number of columns equals the number of combinations between antenna IDs.
Before the combination between antenna IDs are build, the NA value is added to the list of antenna
IDs. An element in this matrix represents the transition probability from an antenna to another,
computed for each tile in the grid.

getGenericModel Builds the generic HMM model.

Description

Builds the generic HMM model using the emission probabilities given by getEmissionProbs().

Usage

getGenericModel(
nrows,
ncols,
emissionProbs,
initSteady = TRUE,
aprioriProb = NULL

)

Arguments

nrows Number of rows in the grid.

ncols Number of columns in the grid.

emissionProbs A matrix with the event location probabilities. The number of rows equals the
number of tiles in the grid and the number of columns equals the number of
antennas. This matrix is obtained by calling getEmissionProbs() function.

initSteady If TRUE the initial apriori distribution is set to the steady state of the transition
matrix, if FALSE the apriori distribution should be given as a parameter.

aprioriProb The apriori distribution for the HMM model. It is needed only if initSteady is
FALSE.

Value

Returns an HMM model with the initial apriori distribution set to the steady state of the transition
matrix or to the value given by aprioriProb parameter.
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getJointModel Builds the joint HMM model.

Description

Builds the joint HMM model using the emmission probabilities given by getEmissionProbsJointModel().

Usage

getJointModel(
nrows,
ncols,
jointEmissionProbs,
initSteady = TRUE,
aprioriJointProb = NULL

)

Arguments

nrows Number of rows in the grid.

ncols Number of columns in the grid.
jointEmissionProbs

A (sparse) matrix with the joint event location probabilities. The number of rows
equals the number of tiles in the grid and the number of columns equals the num-
ber of antennas. This matrix is obtained by calling getEmissionProbsJointModel.

initSteady If TRUE the initial apriori distribution is set to the steady state of the transition
matrix, if FALSE the apriori distribution should be given as a parameter.

aprioriJointProb

The apriori distribution for the HMM model. It is needed only if initSteady is
FALSE.

Value

Returns an HMM model with the initial apriori distribution set to the steady state of the transition
matrix or to the value given by aprioriJointProb parameter.

modeDelta Returns the mode of delta distribution.

Description

Returns the mode of the deltaX or deltaY distribution.

Usage

modeDelta(deltaDistribution)
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Arguments

deltaDistribution

A data.table object that could be Delta X or Delta Y distribution. The table
has two columns: delta and p. It is obtainded from calling buildDeltaProb()
function.

Value

Rhe mode of the delta distribution.

readCells Reads the coverage areas of antennas.

Description

Reads the coverage areas of antennas from a .csv file.

Usage

readCells(cellsFileName, simulatedData = TRUE)

Arguments

cellsFileName It is the name of the file where the coverage areas of antennas are to be found.
The data have two columns, the first one is the antenna ID and the second one is
a WKT string representing a polygon (i.e. it should start with the word POLY-
GON) which is the coverage area of the corresponding antenna. This area is also
called the antenna cell.

simulatedData If TRUE it means that the file with the coverage areas is produced by the data
simulator

Value

A data.table object with 2 columns: the antenna ID and an sp geometry object which is the coverage
area of the corresponding antenna.

readEvents Reads the network events file.

Description

Reads the network events file. This file can come from the network simulator or it ca be a file with
real mobile network events provided by an MNO.

Usage

readEvents(eventsFileName, simulatedData = TRUE)
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Arguments

eventsFileName The name of the file with the network events to be used. Depending on the
parameter simulatedData it could be a .csv file coming from the simulation
software or from a real MNO. In case the file comes from the simulation soft-
ware it should contain following columns:
time,antennaID,eventCode,deviceID,x,y,tile. Only the first 4 columns
are used, the rest are ignored.

simulatedData If TRUE it means that the input data are simulated data, otherwise the data come
from a real MNO.

Value

Returns a data.table object that contains the events generated by the mobile network. The number of
rows equals the number of connection events recorded by the network. The returned object has the
following columns: time,deviceID,eventCode,antennaID,x,y,tile,obsVar. obsVar stands
for observed variable and is a concatenation between the antenna ID and the event code.

readGridParams Reads the parameters of the grid.

Description

Reads the parameters of the grid overlapped on the geographical of interest from a .csv file.

Usage

readGridParams(gridFileName)

Arguments

gridFileName The name of the file with the grid parameters. This file could be the one gener-
ated by the simulation software or can be created with any text editor. The grid
file generated by the simulation software has the following columns: Origin
X,Origin Y,X Tile Dim,Y Tile Dim,No Tiles X,No Tiles Y. We are interested
only in the number of rows and columns and the tile size on OX and OY axes.
Therefore, the file provided as input to this function should have at least the
following 4 columns: No Tiles X ,No Tiles Y,X Tile Dim,Y Tile Dim.

Value

Returns a list with the following items: nrow - the number of rows, i.e. the number of tiles in a
column of the grid, ncol - the number of columns, i.e. the number of tiles in a row of the grid,
tileX - the dimension of a tile on OX axis, tileY - the dimension of a tile on OY axis.
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readPostLocProb Reads a file with the posterior location probabilities.

Description

Reads a .csv file with the posterior location probabilities. Each row of the file corresponds to a tile
and each column corresponds to a time instant.

Usage

readPostLocProb(path, prefixName, deviceID)

Arguments

path The path to the location where the posterior location probabilities are stored. The
file with the location probabilities should have the name postLocDevice_ID.csv
where ID is replaced with the device ID.

prefixName The file name prefix. The whole file name is composed by a concatenation of
prefixName, _ and deviceID.

deviceID The device ID for which the posterior location probabilities are read.

Value

A Matrix object with the posterior location probabilities for the device with ID equals to deviceID.
A row corresponds to a tile and a column corresponds to a time instant.

readSimulationParams Reads the parameters of the simulation used to generate a data set.

Description

Reads the parameters of the simulation used to generate a data set from an .xml file used by the sim-
ulation software. The following parameters are needed by this package: the connection threshold
which is the minimum signal strength/quality that can be used by a mobile device to connect to an
antenna and the probability of having a two mobile devices.

Usage

readSimulationParams(simFileName)

Arguments

simFileName The name of the file used to define a simulation scenario. It is the file that was
provided as an input for the simulation software.

Value

A list with all the parameters read from the file: start_time, end_time, time_increment, time_stay,
interval_between_stays, prob_sec_mobile_phone, conn_threshold.

Appendix C Reference manual for the deduplication package

135



tileEquivalence 27

tileEquivalence Transforms the tiles indices from the notation used by the simulation
software to the one used by the raster package.

Description

In order to perform the population estimations, the area of interest is overlapped with a rectangular
grid of tiles. Each tile is a rectangle with predefined dimensions. This function is a utility function
which transform the tiles indexes from the numbering system used by the simulation software to the
one used by the raster package. The simulation software uses a notation where the tile with index
0 is the bottom left tile while the raster package uses another way to number the tiles, tiles being
numbered starting with 1 for the upper left tile.

Usage

tileEquivalence(nrows, ncols)

Arguments

nrow Number of rows in the grid overlapping the area of interest.

ncol Number of columns in the grid overlapping the area of interest.

Value

Returns a data.frame object with two columns: on the first column are the tile indexes according to
the raster package numbering and on the second column are the equivalent tile indexes according
to the simulation software numbering.
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addconstraint Adds constraints to the model.

Description

The specified constraints are added to the model. If parameter ct is a vector, it is expected to be a
set of transition probabilities indexed as in field transitions of the model. In this case the constraint
added is the equality between the referred probabilities of transition. If parameter ct is a matrix,
it is expected to be a system of additional linear equalities that the model must fulfill. Thus, the
new equations are added to the field constraints of the model. While it is possible to use a matrix
to add equality constraints, it is not recommended because of performance. Previous constraints of
the model are preserved.

Usage

addconstraint(x, ct)

Arguments

x A HMM object.

ct The additional constraints, which can be either a matrix or a vector (see details).

Value

A HMM object similar to the input but with the additional constraints.

See Also

HMM, addtransition
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Examples

model <- HMM(3)
model <- addtransition(model, c(1,2))
model <- addtransition(model, c(2,3))
model <- addtransition(model, c(3,1))
transitions(model)
constraints(model)
model <- addconstraint(model,c(2,4,5))
constraints(model)

addtransition Adds a transition to the model.

Description

The specified transition is added to the model as a transition with non zero probability. Since the
transition probabilities from the initial state of the newly specified transition still have to sum up
to one, the correspondent constraint is modified accordingly. It is not recommended to use this
function to define a big model, as it is much slower than specifying all transitions in advance.

Usage

addtransition(x, t)

Arguments

x A HMM object.

t The transition, as a two dimensional integer vector. The first element is the
number of the initial state and the second one the number of the final state.

Value

A HMM object similar to the input but with the additional transition.

See Also

HMM, addconstraint

Examples

model <- HMM(3)
model <- addtransition(model, c(1,2))
model <- addtransition(model, c(2,3))
model <- addtransition(model, c(3,1))
transitions(model)
constraints(model)
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constraints Matrix of constraints.

Description

Returns the matrix of constraints from a HMM object.

Usage

constraints(x)

## S3 method for class 'HMM'
constraints(x)

Arguments

x the HMM object.

Value

A row major sparse matrix as in HMM.

See Also

HMM, nconstraints, transitions

Examples

model <- HMMrectangle(3,3)
constraints(model)
nconstraints(model)
nrow(constraints(model)) # should agree

createEM Creates the events matrix.

Description

Creates the events matrix for a rectangular grid according to the location of the towers and the S
function.

Usage

createEM(size, towers, S)
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Arguments

size The number of rows and columns in the grid.

towers The towers(antenna) positions. This parameter is a matrix with two rows and
the number of columns equals to the number of antennas. On the first row we
have the X coordinate of the towers and on the secnd row the Y coordinate.

S A function to compute the signal strength.

Value

The events matrix.

destim A package for mobile devices position estimation using HMM.

Description

This package contains functions to compute the posterior location probability for each device over
a grid of tiles covering the geographical area under consideration. It uses Hidden Markov Models.
The theory behind the method is described in detail in WPI Deliverable 3 and in the paper An end-
to-end statistical process with mobile network data for Official Statistics. For an example on how
to use this package please read example1 and example2.

Details

destim: A package for mobile devices position estimation.

emissions Emissions matrix

Description

Returns the matrix of emissions from a HMM object.

Usage

emissions(x)

## S3 method for class 'HMM'
emissions(x)

Arguments

x the HMM object.

Value

A column major sparse matrix as in HMM.
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See Also

HMM, emissions<-, getTM

Examples

model <- HMM(2)
emissions(model)<-diag(2)
emissions(model)

emissions<- Set the emissions of the model

Description

Sets the emissions of the model.

The number of rows must match the number of states. If a matrix is provided, it is converted to
column major sparse matrix (dgCMatrix).

Usage

emissions(x) <- value

Arguments

x A HMM model.

value A (sparse column major) matrix with the likelihoods of each emission (column)
conditioned on the state (row).

Value

Changes the emissions matrix in the model.

See Also

HMM, emissions

Examples

model <- HMMrectangle(10,10)
tws <- matrix(c(3.2, 6.1, 2.2, 5.7, 5.9, 9.3, 5.4,
4.0, 2.9, 8.6, 6.9, 6.2, 9.7, 1.3),
nrow = 2, ncol = 7)
S <- function(x) if (x > 5) return(0) else return(20*log(5/x))
emissions(model)<-createEM(c(10,10), tws, S)
emissions(model)
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fit Fits a HMM model

Description

Fits the transition probabilities of the model by maximum likelihood. The transition probabilities
are fitted by ML, subject to the linear constraints specified in the model. The argument retrain can
be used to avoid local minima. It is possible to specify additional non linear constraints, passing the
suitable arguments to the optimizer.

Usage

fit(x, e, init = FALSE, method = "solnp", retrain = 1, ...)

Arguments

x A HMM model.

e A vector with the observed events. It admits missing values.

init Logical specifying whether the initial state found in x is going to be used. De-
faults to FALSE, which means that steady state initialization will be used in-
stead.

method The optimization algorithm to be used. Defaults to solnp from package Rsolnp.
The other possible choice is constrOptim from package stats.

retrain The times the optimizer will be launched with different initial parameters. The
model with higher likelihood will be returned.

... Arguments to be passed to the optimizer.

Value

The fitted model.

See Also

logLik, initparams, minparams

Examples

model <- HMMrectangle(20,20)
S <- function(x) if (x > 5) return(0) else return(20*log(5/x))
emissions(model) <- createEM(c(20,20), towers, S)
model <- initparams(model)
model <- minparams(model)
logLik(model,events)
model <- fit(model,events)
logLik(model,events)
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fstates This function returns the filtered states whenever an observation is
present and predicted states otherwise.

Description

This function returns the filtered states whenever an observation is present and predicted states
otherwise.

Usage

fstates(P, E, e)

Arguments

P Transition matrix P(will go to i | is in j)

E Event observation matrix P(detection event j | is in i)

e Sequence of observation events. Since we are taking time increase small, it is
expected to have mostly missing values. The first value is expected to have an
observation.

Value

The filtered states.

getTC Gets the column of the transition matrix.

Description

Gets the column of the transition matrix corresponding to a point from a rectangular grid according
to the mask

Usage

getTC(point, size, mask)

Arguments

point We are setting the transition probabilities starting from this point. It corresponds
to the column (point[2] - 1 ) * size[1] + point[1] of the transition matrix.

size Size of the grid. It is expected to be a 2 dimensional vector, containing the
number of rows and columns respectively.

mask Transition probabilities to the contiguous tiles. It is expected to be a 3x3 matrix
where the (2,2) element represents the probability of staying in the current tile.
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getTM Transition matrix.

Description

Returns the transition matrix from a HMM object. The transition matrix is represented as row major.
This way its transpose matrix which is used to left multiply the state is column major.

Usage

getTM(x)

## S3 method for class 'HMM'
getTM(x)

Arguments

x the HMM object.

Value

A row major sparse matrix which is the transition matrix of the model.

See Also

HMM, linkemissions

Examples

model <- HMM(2)
model <- addtransition(model,c(1,2))
model <- initparams(model)
getTM(model)

gettransmatrix Transformation matrix

Description

Returns the transformation matrix that transforms the minimal parameters into the probabilities of
transition. The transformation matrix allows obtains the probabilities of transition from the minimal
set of parameters. If we append an one at the end of the vector of parameters, the product of this
matrix by such vector is the probabilities of transition vector.

Usage

gettransmatrix(x)

## S3 method for class 'HMM'
gettransmatrix(x)
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Arguments

x the HMM object.

Value

A matrix.

See Also

minparams, ptransition, rparams, fit

Examples

model <- HMMrectangle(3,3)
model <- initparams(model)
model <- minparams(model)
# Should be close to zero
range(ptransition(model) - gettransmatrix(model) %*% c(rparams(model), 1))

HMM Class constructor for Hidden Markov models

Description

Creates a HMM object, as specified.

The HMM object contains five fields: states, transitions, constraints, emissions and parameters.

The field states contains a character vector with the names of the states. If the constructor is given
a number S, it sets the names as follows: as.character(1:S). An additional field, called coordinates
is provided too, were in the future the geolocation of the states will be specified. Note that state
determines geolocation, but different states might share geolocation.

The field transitions contain a matrix which is a list of the transitions with non-zero probability.
It is a two row integer matrix where each column represents the transition from first row state to
second row state. The columns of the matrix are ordered by first row and then by second row. This
order corresponds to a row major representation of the transition matrix. The states are referenced
in the same order as they appear in field states. While (number of states)^2 transitions are possible,
a much smaller number is expected. It defaults to still transitions for all states.

The field constraints is the augmented matrix of the system of linear equalities that the model must
fulfill. The variables of the system correspond to the probabilities of transition, in the same order as
in field transitions. It is a row major sparse matrix. The first rows should have equalities between
pairs of transition probabilities, which are rows with just two non zero elements. Next, we have the
sum up to one conditions, which are rows with constant term equal to one. Finally, the remaining
constraints are expected to have constant term different from one (otherwise multiply the constraint
by a constant). This structure, allows an efficient treatment of constraints that are equalities between
pairs of transition probabilities.They are expected to be the most frequent constraints.

The field emissions consists in a matrix that contains the emission probabilities, where the number
of rows is the number of states and each column correspond to a possible output. EM is a column
major sparse matrix. Unlike usual, the emission probabilities are fixed, do not have parameters to
estimate.
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The field parameters contain additional information about the probabilities of transition and the
initial state of the model. Also some auxiliary information to reduce the number of parameters of
the model. See initparams, minparams and initsteady.

Usage

HMM(...)

## S3 method for class 'integer'
HMM(S, TL, CT, EM = NULL, checks = TRUE)

## S3 method for class 'numeric'
HMM(S, ...)

## S3 method for class 'character'
HMM(S, ...)

Arguments

S Number or names of states. It can be either a numeric or a character.

TL Matrix of integers that lists non-zero transitions. The matrix corresponds to the
field transitions of the object (see details).

CT Matrix of constraints. It corresponds to the field constraints of the object (see
details).

EM Matrix of emissions. It corresponds to the field emissions of the object (see
details).

Value

A HMM object.

See Also

initparams, minparams, initsteady

Examples

model1 <- HMM(5)
model2 <- HMM(c("a","b","c"),

TL = matrix(c(1, 1,
1, 2,
2, 1,
2, 2,
2, 3,
3, 2,
3, 3), nrow = 2))

nstates(model1)
ntransitions(model1)
nstates(model2)
ntransitions(model2)
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HMMrectangle Basic HMM grid model.

Description

Creates a basic rectangular grid model as specified. This model is a rectangular grid where the only
transitions allowed are those between contiguous tiles. Moreover, horizontal and vertical transition
probabilities are equal for all tiles. Diagonal transition probabilities are equal between them too, but
different from the former. These constraints mean that there are only two parameters to estimate.
The emissions field is left unassigned.

Usage

HMMrectangle(x, y)

Arguments

x length of the rectangle in tiles.

y width of the rectangle in tiles.

Value

A HMM object.

See Also

emissions, minparams

Examples

model <- HMMrectangle(3,3)
nstates(model)
ntransitions(model)
nconstraints(model)

initparams Initializer for HMM objects

Description

Sets initial parameters for a HMM object, as specified. The field parameters of the HMM object,
which includes both initial state and transition probabilities, is initialized at random.

The initial states probabilities are set to an uniform (0,1) distribution and then divided by their sum.

The initial probabilities of transition are also set to an uniform (0,1) and in this case, projected on
the constrained space. After the projection some probability might result greater than one or less
than zero. Those probabilities are then set to uniform (0,1) again and the process is repeated until
all probabilities of transition are in (0,1) and the constraints are satisfied.
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Usage

initparams(x)

Arguments

x A HMM object.

Value

An initialized HMM object.

See Also

HMM, minparams, initsteady

Examples

model <- HMMrectangle(3,3)
model <- initparams(model)
range(constraints(model) %*% c(ptransition(model), -1)) # It should be close to zero

initsteady Sets the initial state to the steady state

Description

The initial a priori distribution is set to the steady state of the transition matrix.

The Markov Chain is expected to be irreducible and aperiodic. The first because otherwise the
devices would not have freedom of movement. The second because some probabilities from one
state to itself are expected to be non zero. This implies that there exists one unique steady state.

The steady state is computed by solving the sparse linear system (TM - I)x = 0, where TM is
the matrix of transitions I is identity and x the steady state. As it is an homogeneous system, and
because of the uniqueness of the steady state, the solution is a one dimensional vector space, and the
generator does not have any coordinate equal to zero. Then the last coordinate is set to 1 / number
of states, so the sparse linear system becomes inhomogeneous with unique solution. Finally the
solution is normalized so that the components of x sum up to 1.

Usage

initsteady(x)

Arguments

x A HMM object.

Value

The same HMM object of the input with its initial state set to steady state.
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See Also

HMM, initparams, minparams

Examples

model <- HMM(2)
model <- addtransition(model, c(1,2))
model <- addtransition(model, c(2,1))
model <- initparams(model)
istates(model)
model <- initsteady(model)
istates(model)
(istates(model) %*% getTM(model))

istates Initial state probabilities.

Description

Returns the initial state probabilities from a HMM object. The object has to be initialized with
initparams, which generates a random initial state. The vector of probabilities follows the same
order as the states, so ptransition(model)[i] is the probability of state i. Of course, the proba-
bilities sum up to one.

Usage

istates(x)

## S3 method for class 'HMM'
istates(x)

Arguments

x the HMM object.

Value

A numeric vector with the probabilities.

See Also

initparams, fit, nstates, initsteady

Examples

model <- HMM(2)
model <- addtransition(model,c(1,2))
model <- addtransition(model,c(2,1))
model <- initparams(model)
istates(model)
sum(istates(model)) # should be one
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istates<- Set the initial states

Description

Sets the initial distribution of states.

The length must match the number of states, and the sum of the vector must be one.

Usage

istates(x) <- value

Arguments

x A HMM model.

value A numeric vector with a probability for each state that represents the initial
distribution of states.

Value

Changes the initial distribution of states in the model.

See Also

HMM, initparams, initsteady, fit

Examples

model <- HMMrectangle(3,3)
model <- initparams(model)
istates(model)
istates(model) <- (1:9) / sum(1:9)
istates(model)

logLik Minus logLikelihood

Description

Returns the minus logarithm of the likelihood given a model and a set of observations.

A slightly modified version of the forward algorithm is used to compute the likelihood, to avoid
store unneeded data. The sign is changed because it is usual to minimize instead maximize.

Usage

logLik(...)

## S3 method for class 'HMM'
logLik(x, e)
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Arguments

x A HMM model.

e A vector with the observed events. It admits missing values.

Value

The minus logarithm of the likelihood of the events given the model.

See Also

fit, HMM, initparams

Examples

model <- HMMrectangle(20,20)
S <- function(x) if (x > 5) return(0) else return(20*log(5/x))
emissions(model) <- createEM(c(20,20), towers, S)
model <- initparams(model)
model <- minparams(model)
logLik(model,events)

minparams Reparametrizes a HMM model with a minimal set of parameters.

Description

Finds a minimal set of parameters that fully determine the probabilities of transition.

This function avoids to solve a high dimensional optimization problem with many constraints,
parametrizing the probabilities of transition with as few parameters as possible: the number of
degrees of freedom.

A pivoted QR decomposition of the constraints matrix is done, to get both the free parameters and
the matrix that transforms them back into the probabilities of transition.

Many constraints are expected to be equalities between two probabilities of transition, so the func-
tion is optimized for this special kind of constraints.

Usage

minparams(x)

Arguments

x A HMM object.

Value

The same HMM object of the input with some additional fields that store the new parameters and
the matrix that transforms these parameters in the probabilities of transition.

See Also

rparams, rparams<-
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Examples

model <- HMMrectangle(2,2)
model <- initparams(model)
ntransitions(model)
nconstraints(model)
model <- minparams(model)
rparams(model)
range(ptransition(model) -

gettransmatrix(model) %*% c(rparams(model), 1))

nconstraints Number of constraints.

Description

Returns the number of constraints from a HMM object.

Usage

nconstraints(x)

## S3 method for class 'HMM'
nconstraints(x)

Arguments

x the HMM object.

Value

An integer with the number of constraints of the model.

See Also

constraints, nstates, ntransitions

Examples

model <- HMM(5)
nconstraints(model)
model <- HMMrectangle(3, 3)
nconstraints(model)
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nstates Number of states.

Description

Returns the number of states from a HMM object.

Usage

nstates(x)

## S3 method for class 'HMM'
nstates(x)

Arguments

x the HMM object.

Value

An integer with the number of states of the model.

See Also

ntransitions, nconstraints

Examples

model <- HMM(5)
nstates(model)

ntransitions Number of transitions.

Description

Returns the number of possible transitions from a HMM object.

Usage

ntransitions(x)

## S3 method for class 'HMM'
ntransitions(x)

Arguments

x the HMM object.

Appendix D Reference manual for the destim package

157



ptransition 19

Value

An integer with the number of possible transitions of the model.

See Also

transitions, nstates, nconstraints

Examples

model <- HMM(5)
ntransitions(model)
model <- addtransition(model, c(1,2))
ntransitions(model)

ptransition Probabilities of transition.

Description

Returns the probabilities of transition from a HMM object. The object has to be initialized with
initparams, otherwise it will return numeric(0). The order is row major.

Usage

ptransition(x)

## S3 method for class 'HMM'
ptransition(x)

Arguments

x the HMM object.

Value

A numeric vector with the probabilities of transition.

See Also

HMM, initparams, transitions, ntransitions

Examples

model <- HMM(2)
model <- addtransition(model,c(1,2))
model <- addtransition(model,c(2,1))
model <- initparams(model)
ptransition(model)
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rparams Reduced parameters.

Description

Returns the values of the minimal set of parameters. The minimal set of parameters are selected by
minparams. They are a few probabilities of transition that determine the remaining ones because of
the constraints. They are used to fit the model.

Usage

rparams(x)

## S3 method for class 'HMM'
rparams(x)

Arguments

x the HMM object.

Value

A numeric vector with the values of the parameters.

See Also

minparams, ptransition, gettransmatrix, fit

Examples

model <- HMMrectangle(3,3)
model <- initparams(model)
model <- minparams(model)
rparams(model)
ntransitions(model)
length(rparams(model)) # A much smaller parameter space!

rparams<- Set reduced parameters

Description

Sets the parameters selected by minparams function.

The function minparams selects a minimal set of parameters, that fully determine the transition
probabilities. This function sets those parameters and recalculates all transition probabilities from
them.

The model is initialized with initparams and minparams when required.
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Usage

rparams(x) <- value

Arguments

x A HMM model.

value A numeric vector with the new parameters.

Value

Changes parameters$reducedparams$params and parameters$transitions in the object x.

See Also

minparams, rparams, initparams

Examples

model <- HMMrectangle(3,3)
rparams(model)<-c(0.3, 0.03)
ptransition(model)

scpstates Returns ξ like in the Baum-Welch algorithm.

Description

Returns the smooth joint probability mass function for consecutive states, which is usually called
ξ in the Baum-Welch algorithm. Smooth states are marginal but as they are far to be independent
it is convenient to have some information about their dependence. This function returns the joint
probability mass function for two time consecutive states, conditional on the observations. This
agrees with the so called ξ from the Baum-Welch algorithm.

It is returned as a matrix, so that the said joint probability for time instants i - 1 and i are the columns
from i - 1 times the number of states plus one, to i times the number of states.

Usage

scpstates(...)

## S3 method for class 'HMM'
scpstates(x, e)

Arguments

x A HMM model.

e A vector with the observed events. It admits missing values.
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Value

A sparse matrix. The number of rows is the number of states, and the number of columns is the
number of states times the number of observed events minus one. Each full row square slice of the
output matrix corresponds to a joint probability mass function, so it sums up to one.

See Also

HMM, sstates, backward

Examples

model <- HMMrectangle(10,10)
tws <- matrix(c(3.2, 6.1, 2.2, 5.7, 5.9, 9.3, 5.4,
4.0, 2.9, 8.6, 6.9, 6.2, 9.7, 1.3),
nrow = 2, ncol = 7)
S <- function(x) if (x > 5) return(0) else return(20*log(5/x))
emissions(model)<-createEM(c(10,10), tws, S)
obs <- c(1,2,NA,NA,NA,NA,7,7)
model <- fit(model, obs)
scpstates(model, obs)

setsnames<- Set the names of the states.

Description

Sets the names of the states.

The length of the character vector must match the number of states of the model.

Usage

setsnames(x) <- value

Arguments

x A HMM model.

value A character vector with the names.

Value

Changes states names in the object x.

See Also

HMM

Examples

model <- HMM(3)
setsnames(model) <- c("a","b","c")
model$states$names
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sstates Smooth states

Description

Returns the smooth states from the forward-backward algorithm.

Smooth states are the marginal of the state conditional on the observations, for each time. This
agrees with the so called γ from the Baum-Welch algorithm.

It is returned as a matrix, so that the smooth state for time instant i is the column i of the matrix.

Usage

sstates(...)

## S3 method for class 'HMM'
sstates(x, e)

Arguments

x A HMM model.

e A vector with the observed events. It admits missing values.

Value

A sparse matrix. The number of rows is the number of states, and the number of columns is the
number of observed events. Each column of the output matrix corresponds to the probability mass
function for the state, so it sums up to one.

See Also

HMM, scpstates, backward

Examples

model <- HMMrectangle(10,10)
tws <- matrix(c(3.2, 6.1, 2.2, 5.7, 5.9, 9.3, 5.4,
4.0, 2.9, 8.6, 6.9, 6.2, 9.7, 1.3),
nrow = 2, ncol = 7)
S <- function(x) if (x > 5) return(0) else return(20*log(5/x))
emissions(model)<-createEM(c(10,10), tws, S)
obs <- c(1,2,NA,NA,NA,NA,7,7)
model <- fit(model, obs)
sstates(model, obs)
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transitions Transitions.

Description

Returns the list of possible transitions from a HMM object. Each column represents a transition,
the first row is the initial state and the second row is the final state. The transitions are ordered, first
on the initial state and then on the final state. Any transition not listed in the matrix is supposed to
be not possible (zero probability).

Usage

transitions(x)

## S3 method for class 'HMM'
transitions(x)

Arguments

x the HMM object.

Value

An integer matrix with two rows as in HMM.

See Also

HMM, ntransitions, constraints, ptransition

Examples

model <- HMM(2)
transitions(model)
model <- addtransition(model,c(1,2))
model <- addtransition(model,c(2,1))
transitions(model)
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